首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   9篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   12篇
  2015年   8篇
  2014年   7篇
  2013年   15篇
  2012年   4篇
  2011年   7篇
  2010年   6篇
  2009年   10篇
  2008年   5篇
  2007年   12篇
  2006年   9篇
  2005年   5篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   7篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1982年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
61.
K. Bucher  I. Stober 《Geofluids》2016,16(5):813-825
The Urach 3 research borehole in SW Germany has been drilled through a sedimentary cover sequence and reached gneisses of the Variscan crystalline basement at 1604 m below surface. An additional 2840 m has been drilled through fractured basement rocks. The borehole has been used for hydraulic tests in the context of a ‘hot dry rock’ (HDR) project. The sedimentary cover ranges from the Carboniferous to the Middle Jurassic (Dogger) in age and comprises mostly clastic sediments in the Paleozoic and limestone and shale in the Mesozoic. Water composition data from 10 different depths include samples from all major lithological units. The total dissolved solids (TDS) increases from the surface to about 650 m where it reaches 4.1 g l?1 in Triassic limestone. In lower Triassic sandstones, TDS increases very sharply to 28.5 g l?1 and the water is saturated with pure CO2 gas. With increasing depth, TDS does not change much in the clastic sediments of the Permian and Carboniferous. The crystalline basement is marked by a very sharp increase in TDS to 55.5 g l?1 at about 1770 m depth. TDS increases within the basement to more than 78.5 g l?1 at about 3500 m depth. The data suggest that there is limited vertical chemical communication over long periods of time. The CO2 gas cap in the lower Triassic sandstones requires a gastight cover. The chemical stratification of the fluids relates to the permeability structure of the crust at the Urach site and fits well with hydraulic and thermal data from the site.  相似文献   
62.
中国春运人口流动网络的富人俱乐部现象与不平衡性分析   总被引:2,自引:0,他引:2  
魏冶  修春亮  王绮  杨开先 《人文地理》2018,33(2):124-129
基于“百度地图春节人口迁徙大数据”,利用加权网络的富人俱乐部系数和归一化不平衡系数方法,对2015年中国春运期间人口流动网络的富人俱乐部现象和不平衡性进行分析。研究结果表明:中国春运人口流动网络中存在明显的富人俱乐部现象,富人俱乐部城市包括北京、上海、广州、苏州、深圳和东莞,这些城市主导了超过77.66%中国城市的省际人口流动,且与这些城市之间的人口流动多属于不平衡关系,同时俱乐部城市之间、俱乐部城市与一小部分城市之间则属于平衡关系,这种流动格局很容易造成各城市在人口流动网络中的地位分化,严重影响了人口流动网络的公平性和安全性。  相似文献   
63.
中国入境后旅游流的空间分布研究   总被引:48,自引:5,他引:43  
马耀峰  李永军 《人文地理》2001,16(6):44-46,35
入境旅游是中国旅游业发展的重要组成部分。海外旅游者入境后,在空间上呈现出一定的流动特征及分布规律。本文根据中国旅游统计年鉴资料和项目组旅游调查资料,将全国旅游流划分为5大基本旅游流区,为加强各分区间的联合促销及客流、信息共享提供参考依据和技术支撑。  相似文献   
64.
J. Tóth  I. Almási 《Geofluids》2001,1(1):11-36
The ≈ 40 000 km2 Hungarian Great Plain portion of the Pannonian Basin consists of a basin fill of 100 m to more than 7000 m thick semi‐ to unconsolidated marine, deltaic, lacustrine and fluviatile clastic sediments of Neogene age, resting on a strongly tectonized Pre‐Neogene basement of horst‐and‐graben topography of a relief in excess of 5000 m. The basement is built of a great variety of brittle rocks, including flysch, carbonates and metamorphics. The relatively continuous Endr?d Aquitard, with a permeability of less than 1 md (10?15 m2) and a depth varying between 500 and 5000 m, divides the basin's rock framework into upper and lower sequences of highly permeable rock units, whose permeabilities range from a few tens to several thousands of millidarcy. Subsurface fluid potential and flow fields were inferred from 16 192 water level and pore pressure measurements using three methods of representation: pressure–elevation profiles; hydraulic head maps; and hydraulic cross‐sections. Pressure–elevation profiles were constructed for eight areas. Typically, they start from the surface with a straight‐line segment of a hydrostatic gradient (γst = 9.8067 MPa km?1) and extend to depths of 1400–2500 m. At high surface elevations, the gradient is slightly smaller than hydrostatic, while at low elevations it is slightly greater. At greater depths, both the pressures and their vertical gradients are uniformly superhydrostatic. The transition to the overpressured depths may be gradual, with a gradient of γdyn = 10–15 MPa km?1 over a vertical distance of 400–1000 m, or abrupt, with a pressure jump of up to 10 MPa km?1 over less than 100 m and a gradient of γdyn > 20 MPa km?1. According to the hydraulic head maps for 13 100–500 m thick horizontal slices of the rock framework, the fluid potential in the near‐surface domains declines with depth beneath positive topographic features, but it increases beneath depressions. The approximate boundary between these hydraulically contrasting regions is the 100 m elevation contour line in the Duna–Tisza interfluve, and the 100–110 m contours in the Nyírség uplands. Below depths of ≈ 600 m, islets of superhydrostatic heads develop which grow in number, areal extent and height as the depth increases; hydraulic heads may exceed 3000 m locally. A hydraulic head ‘escarpment’ appears gradually in the elevation range of ? 1000 to ? 2800 m along an arcuate line which tracks a major regional fault zone striking NE–SW: heads drop stepwise by several hundred metres, at places 2000 m, from its north and west sides to the south and east. The escarpment forms a ‘fluid potential bank’ between a ‘fluid potential highland’ (500–2500 m) to the north and west, and a ‘fluid potential basin’ (100–500 m) to the south and east. A ‘potential island’ rises 1000 m high above this basin further south. According to four vertical hydraulic sections, groundwater flow is controlled by the topography in the upper 200–1700 m of the basin; the driving force is orientated downwards beneath the highlands and upwards beneath the lowlands. However, it is directed uniformly upwards at greater depths. The transition between the two regimes may be gradual or abrupt, as indicated by wide or dense spacing of the hydraulic head contours, respectively. Pressure ‘plumes’ or ‘ridges’ may protrude to shallow depths along faults originating in the basement. The basement horsts appear to be overpressured relative to the intervening grabens. The principal thesis of this paper is that the two main driving forces of fluid flow in the basin are gravitation, due to elevation differences of the topographic relief, and tectonic compression. The flow field is unconfined in the gravitational regime, whereas it is confined in the compressional regime. The nature and geometry of the fluid potential field between the two regimes are controlled by the sedimentary and structural features of the rock units in that domain, characterized by highly permeable and localized sedimentary windows, conductive faults and fracture zones. The transition between the two potential fields can be gradual or abrupt in the vertical, and island‐like or ridge‐like in plan view. The depth of the boundary zone can vary between 400 and 2000 m. Recharge to the gravitational regime is inferred to occur from infiltrating precipitation water, whereas that to the confined regime is from pore volume reduction due to the basement's tectonic compression.  相似文献   
65.
Vitrinite reflectance data from a petroleum exploration well in the northern Upper Rhinegraben show an unusual vertical maturity trend. Above and below a 500 m thick marl layer the vitrinite reflectance levels are consistent with modern, conductive, geothermal gradients. Between about 1000 and 1500 m depth, however, vitrinite reflectance levels are significantly elevated (about 0.6%Ro). This anomaly cannot be explained with one‐dimensional conductive or conductive–convective heat transfer models, and thermal effects of sedimentation or igneous intrusion seem implausible for this geological setting. The thermal anomaly that formed this maturation anomaly must have been hydrothermal in origin, two‐dimensional in nature, and persisted long enough to elevate the vitrinite reflectance values within this marl unit, yet it must have dissipated before the thermal perturbation would have altered the organic matter below and above the unit. In this study, we propose that the vitrinite reflectance anomalies were caused by a transient thermal inversion induced by episodic, lateral flow of hot (130–160°C) groundwater along conductive fractures and bedding planes. Heat flow constraints suggest that fluids must have moved rapidly up a vertical feeder fault from a depth of at least 3.6 km before migrating laterally. To test this hypothesis, we present a suite of simple, idealized mathematical models of groundwater flow, heat transfer, thermal degradation of kerogen and vitrinite systematics to explore the episodic flow that could have produced the observed thermal anomaly. In these simulations, a single, horizontal aquifer is sandwiched between two less permeable units: the total dimensions of the vertical section model are 4 km thick by 10 km long. The top of the aquifer coincides with the position of the observed thermal maturity anomaly in the Rhinegraben. Boundary conditions along the left edge of this aquifer were varied through time to allow for the migration of hot fluids out into the basin. Inflow temperature, horizontal velocity, duration and frequency of flow and thickness of the aquifer were varied. We found that a thermal maturity anomaly could only be produced by a rather restrictive set of hydrothermal conditions. It was possible to produce the observed vitrinite reflectance anomaly by a single hydrothermal flow event of 130°C fluid migrating laterally into the aquifer at a rate of 1 m a?1 for about 10 000 years. The anomaly is spatially confined to near the left edge of the basin, near the feeder fault. If the flow event lasted longer than 100 000 years, then the maturation anomaly disappeared as the lower confining unit approached steady‐state thermal conditions. It is possible that such an event occurred about 5 million years ago in response to increases in fault permeability associated with far field Alpine tectonism.  相似文献   
66.
基于消费者行为分析的区域旅游市场规划方法研究   总被引:4,自引:1,他引:3  
舒伯阳 《人文地理》2003,18(4):16-18
本文尝试从旅游者消费需求分析角度入手,探讨区域旅游市场规划的方法论创新。本论文引入了动机--行为投射模型,通过对建立在专题旅游市场调查基础上的消费行为数据库的深度剖析,论文揭示了旅游目标市场群体常见的三类消费心理趋向模式(补偿型需求、均衡型需求、超越型需求)以及相对应的旅游产品选择偏好规律。在此基础上提出了区域旅游目标市场群体的心理定位策略,以及相对应的从结构性旅游功能规划到旅游产品、旅游服务供给链连续递进的规划流程体系。即"行为分析(Behavior)-定位(Postioning)-旅游供给(Supple)",简称旅游市场规划的BPS方案。  相似文献   
67.
At the distal western end of a main drainage canal running along West Gate Street in the Hellenistic city of Priene, an unusual masonry outlet structure has been found. The housed structure contains a doubly curvilinear, contracting rectangular cross-section flow passageway that allows drainage water flow through the city perimeter wall. A computer model of the complexly-shaped drainage structure has been hydraulically analysed in order to determine the function of the curvilinear passageway. Results indicate that the internal shaping of the structure hydraulically conditions the flow to create multiple circulatory mixing flows that agitate and entrain debris in the outflow stream sufficient to “self-clean” the outlet, thus preventing clogging. Further calculations of flow free surface shapes at different flow rates indicate the maximum flow capacity that can be processed by the drainage system without overspillage to provide a lower-bound estimate of the steady-state water supply to the city. The design of a self-cleaning, continuous flow urban wastewater system implies that Greek city planners maintained a high level of awareness about the hygienic conditions needed to maintain the health of the populace. The Greek attitude toward technical refinements necessary to improve the quality of urban life could therefore not be better represented than in attention to detail related to water supply and waste water drainage systems as a key to improved life standards.  相似文献   
68.
Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal‐monitoring effort encompassing 25 sites and 10 of the highest‐risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was <2.5°C at Mount Baker. Variability in ground temperature records from the summit fumarole sites is temperature‐dependent, with the hottest sites tending to show less variability. Seasonal variability in the hydrothermal solute flux from magmatically influenced springs varied from essentially undetectable to a factor of 5–10. This range of observed behavior owes mainly to the local climate regime, with strongly snowmelt‐influenced springs and streams exhibiting more variability. As of the end of the 2012 field season, there had been 87 occurrences of local seismic energy densities approximately ≥ 0.001 J/m3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast‐evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long‐term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal‐monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.  相似文献   
69.
We present a structural, microstructural, and stable isotope study of a calcite vein mesh within the Cretaceous Natih Formation in the Oman Mountains to explore changes in fluid pathways during vein formation. Stage 1 veins form a mesh of steeply dipping crack‐seal extension veins confined to a 3.5‐m‐thick stratigraphic interval. Different strike orientations of Stage 1 veins show mutually crosscutting relationships. Stage 2 veins occur in the dilatant parts of a younger normal fault interpreted to penetrate the stratigraphy below. The δ18O composition of the host rock ranges from 21.8‰ to 23.7‰. The δ13C composition ranges from 1.5‰ to 2.3‰. This range is consistent with regionally developed diagenetic alteration at top of the Natih Formation. The δ18O composition of vein calcite varies from 22.5‰ to 26.2‰, whereas δ13C composition ranges from ?0.8‰ to 2.1‰. A first trend observed in Stage 1 veins involves a decrease of δ13C to compositions nearly 1.3‰ lower than the host rock, whereas δ18O remains constant. A second trend observed in Stage 2 calcite has δ18O values up to 3.3‰ higher than the host rock, whereas the δ13C composition is similar. Stable isotope data and microstructures indicate an episodic flow regime for both stages. During Stage 1, formation of a stratabound vein mesh involved bedding‐parallel flow, under near‐lithostatic fluid pressures. The 18O fluid composition was host rock‐buffered, whereas 13C composition was relatively depleted. This may reflect reaction of low 13C CO2 derived by fluid interaction with organic matter in the limestones. Stage 2 vein formation is associated with fault‐controlled fluid flow accessing fluids in equilibrium with limestones about 50 m beneath. We highlight how evolution of effective stress states and the growth of faults influence the hydraulic connectivity in fracture networks and we demonstrate the value of stable isotopes in tracking changes in fluid pathways.  相似文献   
70.
Unusual cone‐shaped iron oxide concretions occur in the Late Triassic, lower fluvial sandstone member of the Trujillo Formation at Palo Duro Canyon in the Texas panhandle. In situ concretions are significant because they record both historical information about past processes that occurred within the geologic unit and present‐day information about the ability of the unit to conduct fluids. The dominant orientation of the concretions is cone‐apex up, body radiating down and out, with long axis perpendicular to bedding. Concretion morphologies are associated with the sedimentary texture and primary bedding structure of the host rock and the corresponding hydrologic regime (i.e. advection versus dispersion for iron‐transport behavior). Three lithofacies in the lower Trujillo member exhibit different cone forms. Field observations of cone orientation and morphology suggest vadose conditions for diagenetic precipitation of iron oxide cements, with timing potentially represented by the major pre‐Miocene unconformity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号