首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   20篇
  2017年   4篇
  2016年   20篇
  2015年   3篇
  2014年   15篇
  2013年   17篇
  2012年   5篇
  2011年   10篇
  2010年   10篇
  2009年   12篇
  2008年   9篇
  2007年   10篇
  2006年   10篇
  2005年   5篇
  2004年   9篇
  2003年   15篇
  2002年   6篇
  2001年   9篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
81.
H. Sakuma  M. Ichiki 《Geofluids》2016,16(1):89-102
We report on molecular dynamics (MD) simulations for predicting the density and isothermal compressibility of an H2O–NaCl fluid as a function of temperature (673–2000 K), pressure (0.2–2.0 GPa), and salt concentration (0.0–21.9 wt%). The atomistic behavior was analyzed via the hydration number of ions and number of ion pairs. Hydration numbers of Na+ and Cl? increased with increasing pressure and decreasing temperature. Conversely, the fraction of Na–Cl ion pairs increased with decreasing pressure and increasing temperature. This hydration and association behavior is consistent with the low dielectric constant of H2O under these conditions. The presence of polynuclear clusters of Na–Cl was confirmed at high temperatures, low pressures, and high salt concentrations. We propose a purely empirical equation of state (EoS) for H2O–NaCl fluids under high temperatures and pressures that should be useful for estimating the fluid distribution in Earth's crust and upper mantle in relation to effects on earthquakes and volcanic eruptions.  相似文献   
82.
The combination of structural, geochemical and palaeotopographic data proves to be an efficient tool to understand fluid transfers in the crust. This study discriminates shallow and deep fluid reservoirs on both sides of the brittle–ductile transition under an extensional regime and points out the role of major transcurrent fault activity in this palaeohydrogeological setting. Palaeofluids trapped in quartz and siderite–barite veins record the transfer of fluids and metal solute species during the Neogene exhumation of the Sierra Almagrera metamorphic belt. Ductile then brittle–ductile extensional quartz veins formed from a deep fluid reservoir, trapping metamorphic secondary brines containing low‐density volatile phases derived from the dissolution of Triassic evaporites. During exhumation, low‐salinity fluids percolated within the brittle domain, as shown by transgranular fluid inclusion planes affecting previous veins. These observations indicate the opening of the system during Serravalian to early Tortonian times and provide evidence for the penetration of surficial fluids of meteoric or basinal origin into the upper part of the brittle–ductile transition. During exhumation, synsedimentary transcurrent tectonic processes occurred from late Tortonian times onwards, while marine conditions prevailed at the Earth's surface. At depth in the brittle domain, quartz veins associated with haematite record a return to high‐salinity fluid circulation suggesting an upward transfer fed from a lower reservoir. During the Messinian, ongoing activity of the trans‐Alboran tectono‐volcanic trend led to the formation of ore deposits. Reducing fluids caused the formation of siderite and pyrite ores. The subsequent formation of galena and barite may be related to an increase of temperature. The high salinity and Cl/Br ratio of the fluids suggest another source of secondary brine derived from dissolved Messinian evaporites, as corroborated by the δ34S signature of barite. These evaporites preceded the main sea‐level drop related to the peak of the salinity crisis (5.60–5.46 Ma).  相似文献   
83.
Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with the Navier‐Stokes law and advection–diffusion transport to perform geometry‐coupled numerical simulations in order to study the evolution of chemical reactions, species concentration, and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da > 10?1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe > 10?1). When the reaction rate is low as in anorthite reservoirs (Da < 10?1), reactant species are more readily transported toward the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length‐to‐aperture ratio is sufficiently large, say l/d > 30, the system response resembles the solution for 1D reactive fluid transport. A decreased length‐to‐aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.  相似文献   
84.
A combined clay mineralogical, fluid inclusion, and K‐Ar study of Upper Jurassic metasediments at the Gehn (Lower Saxony Basin, Germany) provides evidence for a transient hydrothermal event during Upper Cretaceous basin inversion centered on a prominent gravimetric anomaly. Kaolinite and smectite in Oxfordian pelitic parent rocks that cap a deltaic sandstone unit were locally transformed into pyrophyllite, 2M1 illite, R3 illite–smectite, chlorite, and berthierine at the Ueffeln quarry. The pyrophyllite‐bearing metapelites lack bedding‐parallel preferred orientation of sheet silicates and experienced peak temperatures of about 260–270°C consistent with microthermometric data on quartz veins in the underlying silicified sandstones. The presence of expandable layers in illite–smectite and high Kübler Index values indicate that the thermal event was rather short‐lived. K‐Ar dating of the <0.2 μm fraction of the pyrophyllite‐bearing Ueffeln metapelite yields a maximum illitization age of 117 ± 2 Ma. Lower trapping temperatures of aqueous fluid inclusions in quartz veins and the absence of pyrophyllite in metapelites of the Frettberg quarry in a distance of about 2.5 km from the Ueffeln quarry infer maximum paleotemperatures of only 220°C. The highly localized thermal anomaly at Ueffeln suggests fault‐controlled fluid migration and heat transfer that provided a thermal aureole for pyrophyllite formation in the metapelites rather than metamorphism due to deep burial. A pH neutral hydrothermal fluid that formed by devolatilization reactions or less likely by mixing of meteoric and marine waters that interacted at depth with shales is indicated by the low salinity (3–5 wt. % NaCl equiv.) of aqueous inclusions, their coexistence with methane–carbon dioxide‐dominated gas inclusions as well as carbon, hydrogen, and oxygen isotope data. The upwelling zone of hydrothermal fluids and the thermal maximum is centered on a gravimetric anomaly interpreted as an igneous intrusion (‘Bramsche Massif’) providing the heat source for the intrabasinal hydrothermal system.  相似文献   
85.
K. Bucher  I. Stober 《Geofluids》2016,16(5):813-825
The Urach 3 research borehole in SW Germany has been drilled through a sedimentary cover sequence and reached gneisses of the Variscan crystalline basement at 1604 m below surface. An additional 2840 m has been drilled through fractured basement rocks. The borehole has been used for hydraulic tests in the context of a ‘hot dry rock’ (HDR) project. The sedimentary cover ranges from the Carboniferous to the Middle Jurassic (Dogger) in age and comprises mostly clastic sediments in the Paleozoic and limestone and shale in the Mesozoic. Water composition data from 10 different depths include samples from all major lithological units. The total dissolved solids (TDS) increases from the surface to about 650 m where it reaches 4.1 g l?1 in Triassic limestone. In lower Triassic sandstones, TDS increases very sharply to 28.5 g l?1 and the water is saturated with pure CO2 gas. With increasing depth, TDS does not change much in the clastic sediments of the Permian and Carboniferous. The crystalline basement is marked by a very sharp increase in TDS to 55.5 g l?1 at about 1770 m depth. TDS increases within the basement to more than 78.5 g l?1 at about 3500 m depth. The data suggest that there is limited vertical chemical communication over long periods of time. The CO2 gas cap in the lower Triassic sandstones requires a gastight cover. The chemical stratification of the fluids relates to the permeability structure of the crust at the Urach site and fits well with hydraulic and thermal data from the site.  相似文献   
86.
Salar Ignorado is a shallow acid saline lake hosted by a small intervolcanic basin high in the Andes Mountains of northern Chile. Modern surface waters have 3.3–4.1 pH, 0.5–3% total dissolved solids (TDS) and are actively precipitating gypsum crystals. The gypsum crystals trap the acid saline water as fluid inclusions, providing a record of recent surface water characteristics. Salar Ignorado gypsum contains three distinct types of primary fluid inclusions, which result from growth of the gypsum from surface waters. Petrography and microthermometry were performed on 27 gypsum crystals from Salar Ignorado to gain an understanding of recent water chemistry of the salar. One 18.3‐cm‐long gypsum crystal, hosting primary fluid inclusions along 28 successive growth bands, was the focus for fluid inclusion studies and allowed a record of high‐resolution chemical trends. This crystal showed a change in parent fluids during growth, from low salinity, to high salinity, back to low salinity. At the bottom of the crystal, the lowest six fluid inclusion assemblages have salinities of 1.7–5.1 eq. wt. % NaCl. The next nine fluid inclusion assemblages have significantly higher salinity (18.6–27.4 eq. wt. % NaCl) inclusions. The twelve fluid inclusion assemblages near the top of the crystal have low salinity (0.9–8.3 eq. wt. % NaCl) like those at the bottom of the crystal. The high‐salinity fluid inclusions in the middle of this gypsum crystal are interpreted to have formed during a pulse of magmatic/hydrothermal fluids to the surface, perhaps during local active volcanism. Secondary evidence of a magmatic influence on surface waters includes hydrogen sulfide and high molecular weight solid hydrocarbons within some fluid inclusions. This study is among the first detailed fluid inclusion studies of gypsum and suggests that fluid inclusions in gypsum can be paleo‐hydrogeologic proxies.  相似文献   
87.
Recent excavations at the Postclassic period (circa a.d. 1000–1521) mortuary mound of El Cementerio (SON P:10:8), located along the Río Yaqui in central Sonora, Mexico, have documented 105 mortuary features (111 individuals) many of which display elongated intentional cranial modification and several cases of tooth filing. These constitute biocultural traits common across much of Mesoamerica throughout its Prehispanic cultural sequence, which expanded along West Mexico and into northwest Mexico beginning in the late Classic period. The examples from El Cementerio represent the northernmost concentrated expression of these traits and could represent the spread of Mesoamerican/West Mexican identity associated with macro-regional trade and the expansion of the Aztatlán archaeological tradition during the Postclassic period in the region.  相似文献   
88.
Seven vein types are recognized in three continental Devonian molasse basins (the Hornelen, Kvamshesten and Solund basins) in western Norway. These include calcite‐, quartz‐ and epidote‐dominated veins. The salinities of fluid inclusions from quartz‐dominated veins in the Hornelen and Kvamshesten basins are close to or slightly higher than those for modern seawater, whereas the fluids from quartz‐ and calcite‐dominated veins in the Solund basin range from seawater values to 20 wt % NaCl equivalent. Minerals such as biotite, amphibole, titanite, chlorite and epidote are abundant in the latter veins, and are important constituents of the authigenic mineral assemblages. A combination of fluid inclusion and petrological data suggest that at least some of the veins formed at depths around 12–14 km. The Cl/Br ratios and the salinity of the fluid inclusions can be explained by interactions with evaporites, implying that the sedimentary environment forming the basin fill had the strongest influence upon low‐grade metamorphic fluid Cl and Br contents. Differences in the Cl/I and Na/Br ratios between the Solund basin and the Hornelen and Kvamshesten basins are best explained by local mass transfer between pore fluids and the surrounding rock matrix during burial and increasing temperatures.  相似文献   
89.
Vitrinite reflectance data from a petroleum exploration well in the northern Upper Rhinegraben show an unusual vertical maturity trend. Above and below a 500 m thick marl layer the vitrinite reflectance levels are consistent with modern, conductive, geothermal gradients. Between about 1000 and 1500 m depth, however, vitrinite reflectance levels are significantly elevated (about 0.6%Ro). This anomaly cannot be explained with one‐dimensional conductive or conductive–convective heat transfer models, and thermal effects of sedimentation or igneous intrusion seem implausible for this geological setting. The thermal anomaly that formed this maturation anomaly must have been hydrothermal in origin, two‐dimensional in nature, and persisted long enough to elevate the vitrinite reflectance values within this marl unit, yet it must have dissipated before the thermal perturbation would have altered the organic matter below and above the unit. In this study, we propose that the vitrinite reflectance anomalies were caused by a transient thermal inversion induced by episodic, lateral flow of hot (130–160°C) groundwater along conductive fractures and bedding planes. Heat flow constraints suggest that fluids must have moved rapidly up a vertical feeder fault from a depth of at least 3.6 km before migrating laterally. To test this hypothesis, we present a suite of simple, idealized mathematical models of groundwater flow, heat transfer, thermal degradation of kerogen and vitrinite systematics to explore the episodic flow that could have produced the observed thermal anomaly. In these simulations, a single, horizontal aquifer is sandwiched between two less permeable units: the total dimensions of the vertical section model are 4 km thick by 10 km long. The top of the aquifer coincides with the position of the observed thermal maturity anomaly in the Rhinegraben. Boundary conditions along the left edge of this aquifer were varied through time to allow for the migration of hot fluids out into the basin. Inflow temperature, horizontal velocity, duration and frequency of flow and thickness of the aquifer were varied. We found that a thermal maturity anomaly could only be produced by a rather restrictive set of hydrothermal conditions. It was possible to produce the observed vitrinite reflectance anomaly by a single hydrothermal flow event of 130°C fluid migrating laterally into the aquifer at a rate of 1 m a?1 for about 10 000 years. The anomaly is spatially confined to near the left edge of the basin, near the feeder fault. If the flow event lasted longer than 100 000 years, then the maturation anomaly disappeared as the lower confining unit approached steady‐state thermal conditions. It is possible that such an event occurred about 5 million years ago in response to increases in fault permeability associated with far field Alpine tectonism.  相似文献   
90.
We have conducted a detailed taphonomic study of the avifauna of the Pitted Ware culture site of Ajvide on the Island of Gotland in the Baltic Sea, in order to investigate the fowling patterns and the taphonomic history of the bird remains. We have investigated cultural as well as natural modifications on the bird bones, fragmentation and fracture patterns, and performed a systematic surface modification study. No specific area for the deposition of bird remains or specific bird species was identified. All major anatomical parts of birds are present in the assemblage, but there is a dominance of specimens from the wing elements. Traces of cultural modification were observed on the bones, including cut marks, burning, modification (implements, beads, raw material), and gnawing marks. The bone surface modifications and fracture analysis indicate that the majority of the bird bones at Ajvide did not lie on the soil surface for an extended period of time before being deposited in the soil. Dry fractures increase while fresh fractures decrease towards the upper levels of the stratigraphy, indicating more extensive post‐depositional destruction. This may partly be connected to modern agriculture, but also to later use of the settlement area as a burial ground. The Ajvide assemblage contains a variety of birds living in different biotopes. However, bird hunting was mainly focused on sea birds. Auks and ducks are the most common families in the assemblage. We find it likely that the Ajvide hunters conducted organised hunting expeditions to two nearby islands for the hunting of auks, while it was possible to hunt other birds such as ducks closer to the site. The presence of medullary bone and bones from subadult birds indicates a main hunting season in late spring and early summer. However, comparisons with modern migration patterns indicate that hunting may have occurred throughout the year. Of special palaeozoological interest is the find of gannet (Morus bassanus), which apparently in Neolithic times visited the Baltic area more regularly than today. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号