首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   21篇
  152篇
  2020年   1篇
  2016年   19篇
  2015年   2篇
  2014年   14篇
  2013年   13篇
  2012年   5篇
  2011年   9篇
  2010年   9篇
  2009年   11篇
  2008年   7篇
  2007年   10篇
  2006年   8篇
  2005年   5篇
  2004年   9篇
  2003年   16篇
  2002年   5篇
  2001年   9篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
91.
The burial and pore fluid pressure history of fluorite ore deposits is reconstructed: (i) at Hammam Zriba–Djebel Guebli along the eastern margin of the Tunisian Atlas; and (ii) at Koh‐i‐Maran within the northern part of the Kirthar Range in Pakistan. Both the deposits are hosted by Late Jurassic carbonate reservoirs, unconformably overlain by Late Cretaceous seals. Microthermometric analyses on aqueous and petroleum fluid inclusions with pressure–volume–temperature–composition (PVTX) modeling of hydrocarbon fluid isochores are integrated with kinematics and thermal 2D basin modeling in order to determine the age of mineralization. The results suggest a Cenozoic age for the fluorite mineralization and a dual fluid migration model for both ore deposits. The PVTX modeling indicates that the initial stage of fluorite cementation at Hammam Zriba occurred under fluid pressures of 115 ± 5 bars and at a temperature close to 130°C. At Koh‐i‐Maran, the F3 geodic fluorite mineralization developed under hydrostatic pressures of 200 ± 10 bars, and at temperatures of 125–130°C. The late increase in temperature recorded in the F3 fluorites can be accounted for by rapid rise of hotter fluids (up to 190°C) along open fractures, resulting from hydraulic fracturing of overpressured sedimentary layers.  相似文献   
92.
X. Xie  S. Li  H. He  X. Liu 《Geofluids》2003,3(4):245-253
Overpressured systems and intense, anomalously hot fluid expulsion in the Yinggehai Basin of the South China Sea offer an opportunity to understand the history of fluid flow and the process of hydrocarbon accumulation in overpressured environments. Fluid migration pathways from overpressured compartments in the basin are largely controlled by the distribution of faults and fractures. Episodic opening of these faults are related to the dynamics of an overpressured system and tectonic movements during basin evolution. At the crests of diapiric structures, fluid expulsion is seismically imaged as chimney‐ or plume‐like features, low to middle seismic amplitudes, and intermittently chaotic and blank reflecting seismic facies. These fluid pathways are controlled by vertical faults, which commonly penetrate overpressured and overlying normally pressured zones. Fluid expulsion is also observed near the main faults, such as the No. 1 Fault at the north‐eastern margin of the basin. Investigation by sidescan sonar on onshore and offshore Hainan Island indicates that there are more than 100 gas seepages adjacent to the No. 1 Fault. Migration pathways in the diapiric structures are controlled by three types of fault and fracture. Penetrative faults formed by dextral strike‐slip movement of the Red River faults commonly occur in the centre of the diapirs, and may have been a triggering factor for the diapirism, and controlled their distribution. Hydrofractures occur in certain mud‐rich layers and may have been generated by hydraulic fracturing. Radial normal faults occur at the top of diapirs and were formed by the intrusive process. These fluid migration pathways played an important role in regional hydrocarbon accumulation.  相似文献   
93.
An oil‐bearing sandstone unit within the Monterey Formation is exposed in the Los Angeles Basin along the Newport‐Inglewood fault zone in southern California. The unit preserves structures, some original fluids, and cements that record the local history of deformation, fluid flow, and cementation. The structures include two types of deformation bands, which are cut by later bitumen veins and sandstone dikes. The bands formed by dilation and by shear. Both types strike on average parallel to the Newport‐Inglewood fault zone (317°–332°) and show variable dip angles and directions. Generally the older deformation bands are shallow, and the younger bands are steep. The earlier set includes a type of deformation band not previously described in other field examples. These are thin, planar zones of oil 1–2 mm thick sandwiched between parallel, carbonate‐cemented, positively weathering ribs. All other deformation bands appear to be oil‐free. The undeformed sandstone matrix also contains some hydrocarbons. The oil‐cored bands formed largely in opening mode, similar to dilation bands. The oil‐cored bands differ from previously described dilation bands in the degree of carbonate cementation (up to 36% by volume) and in that some exhibit evidence for plane‐parallel shear during formation. Given the mostly oil‐free bands and oil‐rich matrix, deformation bands must have formed largely before the bulk of petroleum migration and acted as semi‐permeable baffles. Oil‐cored bands provide field evidence for early migration of oil into a potential reservoir rock. We infer a hydrofracture mechanism, probably from petroleum leaking out of a stratigraphically lower overpressured reservoir. The deformation bands described here provide a potential field example of a mechanism inferred for petroleum migration in modern systems such as in the Gulf of Mexico.  相似文献   
94.
95.
Three sets of equilibration experiments (Set 1 to Set 3) were performed in cold-seal pressure vessels to investigate the compositional modification of quartz-hosted fluid inclusions after entrapment. Each set of experiment consisted of two stages. In a pre-run, fluid inclusions containing 5–10 wt% NaCl and selected trace elements were synthesized at 700°C/140–200 MPa. These samples were then loaded into new capsules together with Cu-bearing solutions and some mineral buffers, and re-equilibrated at 600–800°C and 70–140 MPa for 6–8 days. LA-ICP-MS analysis of individual fluid inclusions reveals that in re-equilibration experiments in which the outer fluid was composed of KCl (±FeCl2) up to 83% of the original Na content of pre-existing fluid inclusions were lost, and up to 5660 ppm Cu were gained. Other elements with larger ionic radii (i.e. K, Fe, Ba, Sr) were not exchanged, demonstrating that the inclusions remained physically intact and that Na and Cu were transported through quartz by diffusion. The observed Na loss from pre-existing fluid inclusions correlates positively with Cu gain, with about 1 Cu atom being gained per 10 Na atoms lost. Thus, Na and Cu (plus probably H) were exchanged by interdiffusion. Remarkably, this processes resulted in up to 10 times higher Cu concentrations in re-equilibrated inclusions than were present in the outer fluid, i.e. Cu diffused 'uphill'. Large variations of Cu concentrations relative to the concentration of other elements are common also in natural fluid inclusion assemblages. However, no evidence for a correlation between Cu content and Na content was found so far, suggesting that Cu diffusion in natural samples may be dominated by processes other than Na–Cu interdiffusion.  相似文献   
96.
The relationship between fracturing and fracture filling in opening‐mode fractures in the Triassic Buntsandstein in the Lower Saxony Basin (LSB; NW Germany) has been studied by an integration of petrographic and structural analysis of core samples, strontium isotope analysis and microthermometry on fluid inclusions. This revealed the relationship between the timing of the fracturing and the precipitation of different mineral phases in the fractures by constraining the precipitation conditions and considering the possible fluid transport mechanisms. The core was studied from four different boreholes, located in different structural settings across the LSB. In the core samples from the four boreholes, fractures filled with calcite, quartz and anhydrite were found, in addition to pore‐filling calcite cementation. In boreholes 2 and 3, calcite‐filled fractures have a fibrous microstructure whereas in borehole 1, fractures are filled with elongate‐blocky calcite crystals. Anhydrite‐filled fractures have, in all samples, a blocky to elongate‐blocky microstructure. Fractures that are filled with quartz are observed in borehole 2 only where the quartz crystals are ‘stretched’ with an elongated habit. Fluid inclusion microthermometry of fracturing‐filling quartz crystals showed that quartz precipitation took place at temperatures of at least 140°C, from a fluid with NaCl–CaCl2–H2O composition. Melting phases are meta‐stable and suggest growth from high salinity formation water. Strontium isotopes, measured in leached host rock, indicate that, in boreholes 2 and 3, the fluid which precipitated the calcite cements and calcite‐filled fractures is most likely locally derived whereas in borehole 1, the 87Sr/86Sr ratios from the pore‐filling cements and in the elongate‐blocky calcite‐filled fracture can only be explained by mixing with externally derived fluids. The elongate‐blocky anhydrite‐filled fractures, present in boreholes 1, 3 and 4, precipitated from a mixture of locally derived pore fluids and a significant quantity of fluid with a lower, less radiogenic, 87Sr/86Sr ratio. Taking into account the structural evolution of the basin and accompanying salt tectonics, it is likely that the underlying Zechstein is a source for the less radiogenic fluids. Based on the samples in the LSB, it is probable that fibrous fracture fillings in sedimentary rocks most likely developed from locally derived pore fluids whereas elongate‐blocky fracture fillings with smooth walls developed from externally derived pore fluids.  相似文献   
97.
The Miocene siliciclastic sediments infilling the Vallès‐Penedès half‐graben are affected by two sets of structures developed during the extensional tectonics that created the basin. The first set, represented by extension fractures infilled with mud and sands, is attributed to seismically induced liquefaction. The second set, represented by normal faults, corresponds to a high‐permeability horsetail extensional fracture mesh developed near the surface in the hanging walls of normal faults. The incremental character of the vein‐fills indicates episodic changes in the tectonic stress state and fault zone permeability. Two episodes of fluid migration are recorded. The first episode occurred prior to consolidation and lithification when shallow burial conditions allowed oxidizing meteoric waters to flow horizontally through the more porous and permeable sandy layers. Development of clastic dikes allowed local upward flow and dewatering of the sandy beds. Liquefaction and expulsion of fluids were probably driven by seismic shaking. During the first episode of fluid migration there was no cementation of the sandstone or within the fractures, probably because little fluid was mobilized by the predominantly compaction‐driven flow regime. The second episode of fluid migration occurred synchronously with normal fault development, during which time the faults acted as fluid conduits. Fluids enriched in manganese, probably leached from local manganese oxyhydroxides soon after sedimentation, moved laterally and produced cementation in the sandstone layers, eventually arriving at the more porous and permeable fault pathways that connected compartments of different porosities and permeabilities. Carbonate probably precipitated in fractures saturated with meteoric water near the ground surface at a transitional redox potential. Once the faults became occluded by calcite cement, shortly after fault development, they became barriers to both vertical and horizontal fluid flow.  相似文献   
98.
The province of Burdur (SW Turkey) is seismically an active region. A structural, geochronological, petrographical, geochemical and fluid inclusion study of extension veins and fault‐related calcite precipitates has been undertaken to reconstruct the palaeofluid flow pattern in this normal fault setting in the Aegean region. A palaeostress analysis and U/Th dating of the precipitates reveals the neotectonic significance of the sampled calcites. Fluid inclusion microthermometry of calcites‐filling extension veins shows final melting temperatures (Tm ice) of 0°C. This indicates pure water, most likely of meteoric origin. The oxygen isotope values (?9.8‰ to ?6.5‰ VPDB) and the carbon isotopic composition (?10.4‰ to ?2.9‰ VPDB) of these calcites also show a near‐surface meteoric origin of the fluid responsible for precipitation. The microstructural characteristics of fault‐related calcites indicate that calcite precipitation was linked with fault activity. Final melting temperature of fault‐related calcites ranges between 0 and ?1.9°C. The oxygen isotope values show a broad range between ?15.0‰ and ?2.2‰ VPDB. Several of these calcites have a δ18O composition that is higher or lower than the oxygen isotopic composition of meteoric calcites in the area (i.e. between ?10‰ and ?6‰ VPDB). The δ13C composition largely falls within the range of the host limestones and reflects a rock‐buffered system. Microthermometry and stable isotopic study indicate a meteoric origin of the fluids with some degree of water–rock interaction or mixing with another fluid. Temperatures deduced from microthermometry and stable isotope analyses indicate precipitation temperatures around 50°C. These higher temperatures and the evidence for water–rock interaction indicate a flow path long enough to equilibrate with the host–rock limestone and to increase the temperature. The combined study of extension vein‐ and fault‐related calcite precipitates enables determining the origin of the fluids responsible for precipitation in a normal fault setting. Meteoric water infiltrated in the limestones to a depth of at least 1 km and underwent water–rock interaction or mixing with a residual fluid. This fluid was, moreover, tapped during fault activity. The extension veins, on the contrary, were passively filled with calcites precipitating from the downwards‐migrating meteoric water.  相似文献   
99.
Mineralised vein systems have been investigated at nine localities at the southern margin of the Anglo‐Brabant fold belt in Belgium. During the late Silurian to early Middle Devonian Caledonian orogeny, shear zones formed, inferred to be associated with granitoid basement blocks in the subsurface. The circulation of a metamorphic fluid, possibly originating in the Cambrian core of the fold belt, along these shear zones resulted in the formation of mesozonal orogenic mineralisation at the southern margin of the Anglo‐Brabant fold belt. The fluid had a composition dominated by H2O–CO2–X–NaCl–KCl. The shear zones form part of a greater fault zone, the Nieuwpoort–Asquempont fault zone, which is characterised by normal faulting that started before the Givetian and by the reactivation of the shear zones. Two fluid generations are associated with this normal faulting. First, a low salinity H2O–NaCl(–KCl) fluid migrated through the Palaeozoic rocks after the Silurian. Based on the isotopic composition, this fluid could be a late‐metamorphic Caledonian fluid or a younger fluid that originated from the Rhenohercynian basin and interacted with Lower Devonian rocks along its migration path. Second, a high salinity H2O–NaCl–CaCl2 fluid was identified in the fault systems. Similar fluids have been found in southern and eastern Belgium, where they produced Mississippi Valley‐type Zn–Pb deposits. These fluids are interpreted as evaporative brines that infiltrated the Lower Palaeozoic basement, from where they were expelled during extensional tectonism in the Mesozoic.  相似文献   
100.
A major Alpine‐type peridotite located at Almklovdalen in the Western Gneiss Region of Norway was infiltrated by aqueous fluids at several stages during late Caledonian uplift and retrogressive metamorphism. Following peak metamorphic conditions in the garnet–peridotite stability field, the peridotite experienced pervasive fluid infiltration and retrogression in the chlorite–peridotite stability field. Subsequently, the peridotite was infiltrated locally by nonreactive fluids along fracture networks forming pipe‐like structures, typically on the order of 10 m wide. Fluid migration away from the fractures into the initially impermeable peridotite matrix was facilitated by pervasive dilation of grain boundaries and the formation of intragranular hydrofractures. Microstructural observations of serpentine occupying the originally fluid‐filled inclusion space indicate that the pervasively infiltrating fluid was characterized by a high dihedral angle (θ > 60°) and ‘curled up’ into discontinuous channels and fluid inclusion arrays following the infiltration event. Re‐equilibration of the fluid phase topology took place by growth and dissolution processes driven by the excess surface energy represented by the ‘forcefully’ introduced external fluid. Pervasive fluid introduction into the peridotite reduced local effective stresses, increased the effective grain boundary diffusion rates and caused extensive recrystallization and some grain coarsening of the infiltrated volumes. Grain boundary migration associated with this recrystallization swept off abundant intragranular fluid inclusions in the original chlorite peridotite, leading to a significant colour change of the rock. This colour change defines a relatively sharp front typically located 1–20 cm away from the fractures where the nonreactive fluids originally entered the peridotite. Our observations demonstrate how crustal rocks may be pervasively infiltrated by fluids with high dihedral angles (θ > 60°) and emphasize the coupling between hydrofracturing and textural equilibration of the grain boundary networks and the fluid phase topology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号