首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2016年   2篇
  2014年   4篇
  2013年   22篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
31.
The presented research focuses on large-scale seismic testing under multi-directional ground motion of a three-story high, wood-frame residential building representing late 1960's California construction. Earthquake lateral resistance is provided by plywood shear walls around the perimeter of the building with an open front in the first story for tuck-under parking. Accordingly, the as-built structural configuration is asymmetric in plan and discontinuous in elevation with tendency to twist about a vertical axis and to form a weak story mechanism. The test results confirm this tendency. They also reveal the sensitivity of the response to multi-direction ground motion. Asymmetric damage patterns are induced by the multi-component motions in the walls oriented perpendicular to the open front for the as-built test structure, with or without finish materials. However, the observed damage remained noncritical as far as structural integrity is concerned even for ground accelerations exceeding 120% of that recorded during Northridge earthquake. This is viewed as a consequence of the better construction of the test building compared to actual construction. Investigated retrofit includes adding a welded moment resisting steel frame around of the garage opening and strengthening the diaphragm to header beam connections. The study indicates that the retrofit significantly reduced the maximum story drift in the open front. Moreover, the finish material and the retrofit greatly reduce the maximum rotation of the building about the vertical axis.  相似文献   
32.
Pull-back and shaking table test results on a simple model of a three-storey structure that includes shape memory alloys (SMA) copper-based dampers are presented and discussed. The model corresponds to a rigid-framed steel structure and the dampers to austenite CuAlBe wires inserted as bracing at each story. The inclusion of the dissipators in the structure increases the percentage of critical damping from 0.59% for the bare case to 5.95% for the braced system. At the same time, the structural stiffness increases making the first fundamental frequency change from 2.5–3.7 Hz (0.4–0.27s). The net effect of these two factors is a 30–60% reduction of peak relative displacements compared to the ones obtained without dissipation devices when the structure is subjected to earthquake records. Depending on records frequency contents, a reduction of the peak accelerations to near 58% also can be obtained. Additionally, a crude nonlinear analytical model has been studied that can predict the earthquake responses reasonably well.  相似文献   
33.
A previously published explicit method has been proved to have the same numerical properties as those of constant average acceleration method for linear elastic systems. Although its application to the pseudodynamic testing of nonlinear systems with high frequency modes has been conducted and thus unconditional stability for nonlinear systems was indicated, there is still lack of an analytical proof. In order to explore the nonlinear performance of this explicit pseudodynamic algorithm, a new parameter of instantaneous degree of nonlinearity is introduced to monitor the stiffness change between the stiffness at the end of a time step and the initial stiffness. This parameter enables basic analysis and error propagation analysis for a nonlinear system. In addition, it can also be applied to construct the rough guidelines to select an appropriate time step to conduct a pseudodynamic test although it is almost impossible to achieve this goal using the currently available techniques for a nonlinear system. Analytical results reveal that this algorithm can have unconditional stability for instantaneous stiffness softening and linear elastic systems while it has conditional stability for instantaneous stiffness hardening systems. The proposed rough guidelines for selecting a time step to yield a reliable pseudodynamic test are confirmed with numerical examples.  相似文献   
34.
The experimental work focuses on the ductility of the reinforced concrete (RC) seismic structural walls in buildings of mid-rise height. A full-scale five-story structural wall was tested to obtain results, still scarce in literature, without the influence of size effect. An unusual detailing with large diameter longitudinal rebars uniformly distributed in the wall length was adopted to prevent premature web rebar fracture and shear sliding. The plastic hinge length and deformations were evaluated in detail. The results show the high ductility of the wall that reached a total drift of 2.5%, larger than those usually required in design.  相似文献   
35.
Two-story three-bay reinforced concrete frames with and without chevron brace was tested using pseudo dynamic test method. The chevron braces were implemented to the interior span of the RC frame. Chevron-braced frame was observed to be effective to control inter-story drift demands. Based on the observed damage state and dynamic response of the test frames, performance states were discussed for different scales of Duzce ground motions. The test results were compared with the results of the nonlinear time history analysis. The analysis results were capable of estimating the base shear capacity and displacement demands with a reasonable accuracy.  相似文献   
36.
The authors of the article “Full-Scale Experimental Verification of Soft-Story-Only Retrofits of Wood-Frame Buildings using Hybrid Testing” respond to a discussion by Bruce Maison.  相似文献   
37.
Three reinforced concrete (RC) circular column specimens without an effective concrete cover were tested under constant axial compressive as well as cyclic lateral loading. The seismic behavior of the specimens under different loading paths was examined with the objective of understanding the influence of displacement history sequence on the seismic behavior of the columns in near-fault earthquakes. The influence of displacement history sequence upon the hysteretic characteristics, stiffness degradation, lateral capacity, as well as energy dissipation analysis was conducted. The hoop strains of lateral reinforcement at varied column heights under cyclic loading were attained by means of 8–16 strain gauges attached along the hoops. Additionally, the characteristics of strain distribution were investigated in the transverse reinforcement. The results of strain distribution were evaluated with Mander’s confinement stress model and the distribution around the cross section. The length of the plastic hinge at the end of the specimen was evaluated by measurement as well as the inverse analysis. Finally, the deformation of the specimen, which includes the components of shear deformation, bending deformation and bonding-slip deformation, was evaluated and successfully separated.  相似文献   
38.
A piezoelectric transducer capable of measuring both shear and compression wave velocities in soil simultaneously in triaxial testing conditions is presented. Performance evaluation of disk transducer system showed that the use of low-noise coaxial cables, proper grounding, and high resolution wave recorder can significantly enhance signal quality and eliminates crosstalk deterioration. Distortions due to near-field effects were found to diminish by increasing input frequency and by using sinusoidal input waveform, compared to square input. Disk-type piezoelectric transducers show significant future potential for laboratory determination of shear, and compression modulus of soil because of their robustness and noninvasive nature.  相似文献   
39.
ABSTRACT

Mortar is of all masonry components the most difficult to be experimentally characterized in heritage buildings. This article investigates the possibility of combining different in-situ and laboratory minor destructive testing (MDT) techniques to assess the strength of mortar in historical brickwork. Lime mortar and clay brick walls were built in the laboratory and then tested in order to derive empirical correlation rules among three different MDT techniques: double punch test (DPT), helix pull-out test (HPT), and pin penetration test (PPT). The outcomes of this activity were used eventually to assess the mortar properties of an important historical heritage structure, Casa Puig i Cadafalch, located near Barcelona. The research is intended to promote the use of MDT in studies and conservation works on built cultural heritage by providing criteria for the evaluation of the strength of existing mortar with respectful sampling and testing techniques.  相似文献   
40.
The energy dissipation capacity of the NiTi alloy was evaluated as part of a series of shake table tests. A superelastic damper was developed to take advantage of the hysteretic energy dissipation associated with this type of shape memory alloy. Each device was tested at different intensity levels. A vertical steel cantilever with 600 kg mass on top was subjected to a series of ground motions with different spectral characteristics. The dampers were placed as part of a tie system, restraining the horizontal movement of the top mass. The devices showed stable hysteretic behavior allowing for energy dissipation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号