首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   7篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   21篇
  2012年   2篇
  2011年   3篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有58条查询结果,搜索用时 31 毫秒
31.
In this article, Bayesian approach is used for estimation of seismic fragility of un-anchored on‐grade steel storage tanks based on historical data and American Lifeline Alliance tanks database. The approach properly accounts for epistemic as well as aleatory uncertainties. The point and interval estimates of the fragility are formulated based on structural reliability method that implicitly or explicitly reflects the influence of epistemic uncertainty. The fragility curves developed herein are compared to corresponding relations currently available in the technical literature, the comparison suggest that actual tank performance is better than that predicted in the literature. Finally, application of fragilities in loss estimation methodology is investigated and showing a considerable scatter in the results corresponding to different fragilities.  相似文献   
32.
In this article, a performance-based seismic design (PBD) methodology is proposed for the design of reinforced concrete buildings, taking into account the influence of infill walls. Two variants of the PBD framework are examined: The first is based on the non-linear static analysis procedure (NSP) while the second relies on the non-linear dynamic analysis procedure (NDP). Both design approaches are compared in the context of structural optimization with reference to the best possible design achieved for each case examined. Life-cycle cost analysis is considered a reliable tool for assessing the performance of structural systems and it is employed in this study for assessing the optimum designs obtained. The optimization part of the problem is performed with an Evolutionary Algorithm while three performance objectives are implemented in all formulations of the design procedures. The two most important findings can be summarized as follows: (i) if structural realization follows the design assumptions, then total expected life-cycle cost of the three type of structures, bare, fully infilled and open ground story, is almost the same and (ii) if an open ground story building is designed as bare or as fully infilled frame, real performance will be much worse than anticipated at the design stage.  相似文献   
33.
This article is the second of two companion articles that evaluate the seismic performance of steel moment-resisting frames with innovative beam-to-column connections that incorporate shape memory alloy (SMA) elements to enhance the energy dissipation characteristics of such frames. Building upon the finite element models of the three- and nine-story frames that were developed in the first article, the seismic demands on partially restrained frames with and without SMA elements are evaluated within a probabilistic framework. The results of this evaluation, expressed in the form of demand hazard curves, depict the effectiveness of the SMA connections in enhancing building performance over a range of demand levels. Martensitic SMA connections are most effective in controlling deformation demands on the frame from high levels of seismic intensity. In contrast, the recentering capability of superelastic SMA connections make them most suitable for reducing residual deformations in the structure, a reduction that is achieved at the expense of increased deformation demands during strong excitation. However, neither connection is uniformly beneficial at all hazard levels, suggesting that SMA systems must be tailored to the specific performance objectives for the building structural system.  相似文献   
34.
One of the most challenging aspects of the seismic assessment of existing buildings is the characterization of structural modeling uncertainties. Recent codes, such as Eurocode 8, seem to synthesize the effect of structural modeling uncertainties in the so-called confidence factors that are applied to mean material property estimates. The confidence factors are classified and tabulated as a function of discrete knowledge levels acquired based on the results of specific in-situ tests and inspections. In this approach, the effect of the application of the confidence factors on structural assessment is not explicitly stated. This work presents probabilistic performance-based proposals for seismic assessments of RC buildings based on the knowledge levels. These proposals take advantage of the Bayesian framework for updating the probability distributions for structural modeling parameters based on the results of tests and inspections. As structural modeling parameters, both the mechanical material properties and also the structural detailing parameters are considered. These proposals can be categorized based both on the amount of structural analysis effort required and on the type of structural analysis performed. An efficient Bayesian method is presented which relies on simplified assumptions and employs a small sample of structural model realizations and ground motion records in order to provide an estimate of structural reliability. As an alternative proposal suitable for code implementation, the simplified approach implemented in the SAC-FEMA guidelines is adapted to existing structures by employing the efficient Bayesian method. This method takes into account the effect of both ground motion uncertainty and the structural modeling uncertainties on the global performance of the structure, in a closed-form analytical safety-checking format. These alternative proposals are demonstrated for the case study structure which is an existing RC frame. In particular, it is shown how the parameters for the safety-checking format can be estimated and tabulated as a function of knowledge level, outcome of tests, and the type of structural analysis adopted.  相似文献   
35.
The feasibility of using output-only model-free wavelet-based techniques for damage detection in reinforced concrete structures subjected to seismic loads is explored through the analysis of the results of a full scale shake table test of a reinforced concrete bridge column recently performed at the NEES Large High Performance Outdoor Shake Table. The evaluated approaches are based solely in the analysis of the acceleration time histories recorded in the structure. The viability of using numerical models to validate this type of damage detection methodologies is also evaluated. Wavelet analyses were capable of identifying the rebar fracture episodes and partially identified the frequency shifts in the structure as the inelastic demand increased. It was also found that, depending on the methodology employed, the use of numerical models to validate damage detection techniques can oversimplify the actual problem and/or induce spurious irregularities.  相似文献   
36.
The effect of autoclaved aerated concrete (AAC) infill walls on the structural system dynamics of a two-story reinforced concrete building is investigated using its finite element structural model, which is calibrated to simulate the acceleration-frequency response curves from its forced vibration test. The model incorporating the AAC infill walls by equivalent diagonal struts captures the increase in lateral stiffness of the building and the torsional motions induced due to the asymmetrically placed AAC infill walls. A higher strut width coefficient than in ASCE/SEI 41-06 is recommended to model the stiffness of the AAC infill walls in the elastic range.  相似文献   
37.
The goal of this article is to select those real (or recorded) ground motions capable of exposing the low- and mid-rise reinforced concrete frame structures to an extreme limit state. By performing correlation analyses, two optimal intensity measures are first selected to represent the ground motion damage potential. Then based on each record's damage potential, four subsets of strong ground motions, referred to as the most unfavorable ground motions, are identified and preliminarily confirmed to be applicable to the low- and mid-rise RC frame structures.  相似文献   
38.
本文应用结构变化指数和专业化指数,定量分析了全国各省、市、区1986至1991年农村工业结构变化的差异、专业化差异及两者关系的差异,并根据各地专业化部门的变化趋势,对农村工业结构政策提出若干建议。  相似文献   
39.
A reliability-based methodology to estimate strength amplification factors for structures with asymmetric yielding is proposed. The approach is based on structural demand hazard analyses. Nonlinear time-history analyses of tridimensional simplified systems are carried out. The effects of two orthogonal components of the seismic ground motions and soil-structure interaction, are considered. Results show that the expected ductility demand of systems with asymmetric yielding may be much higher than those of symmetric systems. A simplified mathematical expression (which is function of the ratio between the fundamental vibration period of the system and that of the soil, ductility demand, and level of asymmetric yielding) is proposed to estimate the amplification factors. The expression is applied successfully to a 9-story reinforced concrete building exhibiting asymmetric yielding produced by tilting.  相似文献   
40.
ABSTRACT

This work investigates the use of an advanced long-term vibration-based structural health monitoring tool to automatically detect earthquake-induced damages in heritage structures. Damage produced in a monumental bell-tower at increasing values of the Peak Ground Acceleration (PGA) of the seismic input is predicted by incremental nonlinear dynamic analysis, using a Finite Element model calibrated on the basis of experimentally identified natural modes. Then, predicted damage effects are artificially introduced in the monitoring data to check for their detectability. The results demonstrate that a very small damage, associated to a low intensity and low return period earthquake, is clearly detected by the monitoring system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号