首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   1篇
  234篇
  2023年   1篇
  2020年   1篇
  2019年   19篇
  2018年   37篇
  2016年   2篇
  2015年   2篇
  2014年   25篇
  2013年   140篇
  2012年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  1978年   1篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
61.
This article presents a Lyapunov-based analysis/redesign approach for the optimal seismic design of added viscous dampers in 3D framed structures. The optimal solution minimizes the total added damping while the mean squared drifts at the peripheral frames are constrained to allowable values under a white noise excitation. The proposed approach uses Lyapunov equation for analysis and an optimality criterion that dictates “fully stressedness” for redesign. Hence, the design process is actually comprised of an iterative solution of a set of algebraic equations. Three examples are solved so as to highlight the advantages of the proposed approach — a 3-story shear frame, an 8-story, 3-bay by 3-bay setback frame, and a 10-story industrial frame.  相似文献   
62.
A uniaxial shake table test of a full-scale slice of a seven-story reinforced concrete wall building was performed at the University of California, San Diego. A 2D analytical model that primarily employed fiber-based beam-column elements was used for a blind prediction of the global response of the building to the imposed input accelerations. An improved analytical model, which adequately simulates the building's dynamic response and comparison of measured and analytical results, is presented. The lessons learned from participation in the blind prediction with particular attention to the effects of issues commonly ignored in analytical modeling of concrete buildings are included.  相似文献   
63.
A methodology is presented for assessing the seismic vulnerability of inventories of contents to multiple failure modes. An ordering method to find out probabilities of failure of a conditional mode upon the survival of the other modes is applied. The procedure considers the statistical correlation of failure modes due to the dynamic response, such as sliding and/or overturning, of contents and also to non structural components. This methodology was applied to inventories of four types of occupancy (house, school, office, and hospital) located in Mexico City, considering that all contents are situated at ground level. Expected damage functions for these inventories show large differences between them, the house and school inventories being the least vulnerable, and the hospital inventory, the most vulnerable, even for low intensities.  相似文献   
64.
T-shaped slender reinforced concrete (RC) structural walls are commonly used in medium-rise and high-rise buildings as part of lateral force resisting system. Compared to its popularity, experimental results on seismic performance of these walls are relatively sparse, especially for data regarding these walls in the non-principal bending directions. This article aims at providing additional experimental evidence on seismic performance of T-shaped RC structural walls. Experimental results of six T-shaped RC walls were presented. These walls resemble the structural walls found in existing buildings in Singapore and possess slightly inferior details compared to the requirements of modern design codes. The test variables were the loading direction and the axial load ratio. The experimental results were discussed in terms of the failure mechanisms, cracking patterns, hysteretic responses, curvature distributions, displacement components, and strain profiles. In addition, the experimental results were compared with methods commonly adopted in current design practice including the nonlinear section analyses, shear strength models and effective width of the tension flange. The experimental data illustrate that the shear lag effect not only was not accurately accounted for by the effective width method but also significantly affected the strength and stiffness of the tested specimens.  相似文献   
65.
There are various possibilities for the selection and scaling of ground motions for advanced seismic assessment of buildings using nonlinear response-history analyses. As part of an on-going project looking at building-specific loss assessment in Italy, this article highlights a number of challenges currently facing the use of conditional spectra for ground motion selection in practice, essentially related to the limited amount of seismic hazard information that is publicly available. To illustrate the points being made, the challenges faced when trying to develop conditional spectra and select spectrum-compatible accelerograms for a rock site in Napoli, Italy, are described and the seismic assessment results obtained for a number of reinforced concrete wall structures are presented. Aside from providing practitioners with an appreciation of the potential difficulty associated with using conditional spectra for record selection, this technical note should also motivate national authorities to provide more background information on national seismic hazard data and detailed guidance for record selection.  相似文献   
66.
The seismic response of bridges is affected by a number of modeling considerations, such as pier embedment, buried pile caps, seat-type abutments, pounding, bond slip and architecturally flared part of piers, and loading considerations, such as non-uniform ground excitations and orientation of ground motion components, which are not readily addressed by design codes. This article addresses a methodology for the nonlinear static and dynamic analysis of a tall, long-span, curved, reinforced-concrete bridge, the Mogollon Rim Viaduct. Various modeling scenarios are considered for the bridge components, soil-structure interaction system, and materials, i.e., concrete and reinforcing steel, covering all its geotechnical and structural aspects based on recent advances in bridge engineering. Various analysis methodologies (nonlinear static pushover, time history response to uniform and spatially variable seismic excitations, and incremental dynamic analyses) are performed. For the dynamic analyses, a suite of nine earthquake accelerograms are selected and their characteristics are investigated using seismic intensity parameters. A recently developed approach for the generation of non-uniform seismic excitations, i.e., spatially variable simulations conditioned on the recorded time series, is used. Methods for the evaluation of structural performance are discussed and their limitations addressed. The numerical results of the seismic assessment of the Mogollon Rim Viaduct are presented in the companion article (Part II). The sensitivity of the bridge response to the adopted modeling, loading and analyzing strategies, as well as the correlation between structural damage and seismic intensity parameters are examined in detail.  相似文献   
67.
A displacement-based method for the design of an energy dissipating system is proposed in this article. The device, which is composed of added concrete walls equipped with hysteretic Added Damping and Stiffness (ADAS) dampers, is aimed at upgrading the seismic behavior of existing masonry structures. The design method is based upon a simplified model of the overall structure-dissipating system. The proposed displacement-based design procedure was tested by means of inelastic response-time history analyses considering different masonry structures. The results of the analyses were compared with the seismic behavior expected from the design.  相似文献   
68.
Considerable progress has been made on the research of non-rectangular reinforced concrete (RC) squat walls over the past decades. However, the experimental data of L-shaped RC squat walls remain limited, especially for their seismic behaviors under non-principal bending actions. This paper presents an experimental and numerical investigation on L-shaped RC squat structural walls with an emphasis on how varying the directions of lateral cyclic loading influences the seismic responses of these walls. Four L-shaped specimens are tested under lateral cyclic displacements and low levels of axial compression The variables are axial loads and lateral loading directions. The performance of specimens is discussed in terms of cracking patterns, failure mechanisms, hysteretic responses, deformation components and strain profiles. Furthermore, three-dimensional finite element models are developed to supplement the experimental results. The direction of lateral loading is found to have a significant effect on the peak shear strength of L-shaped RC squat walls.  相似文献   
69.
《馆藏文物防震规范》WW/T 0069-2015,基于馆藏文物防震安全提出馆舍、展陈和文物全系统防震安全理念、设计方法和具体措施。本研究针对馆藏文物防震设计方法、适用范围、展柜及文物安全性判别等关键技术问题展开研究。首先,提出了"地震波+馆舍+展柜+文物"的全过程全系统防震设计理念;其次,针对浮放展柜及文物,进行地震作用下安全性分析研究;第三,与Getty博物馆研究成果对比,验证本研究理论的正确性与可靠性。分析得出:文物防震安全与文物高宽比、支撑接触面摩擦系数、安放处加速度峰值等因素有关;引入了抗滑动安全系数和抗倾覆安全系数进行设计,可充分保证文物安全性。  相似文献   
70.
Shape memory alloys (SMAs) are a class of materials that have unique properties, including Young's modulus-temperature relations, shape memory effects, superelastic effects, and high damping characteristics. These unique properties, which have led to numerous applications in the biomedical and aerospace industries, are currently being evaluated for applications in the area of seismic resistant design and retrofit. This paper provides a critical review of the state-of-the-art in the use of shape memory alloys for applications in seismic resistant design. The paper reviews the general characteristics of shape memory alloys and highlights the factors affecting their properties. A review of current studies show that the superelastic and high-damping characteristics of SMAs result in applications in bridges and buildings that show significant promise. The barriers to the expanded use of SMAs include the high cost, lack of clear understanding of thermo-mechanical processing, dependency of properties on temperature, and difficulty in machining.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号