首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   1篇
  2023年   1篇
  2020年   1篇
  2019年   19篇
  2018年   37篇
  2016年   2篇
  2015年   2篇
  2014年   25篇
  2013年   140篇
  2012年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  1978年   1篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
11.
The seismic response of a continuous 4-span bridge designed according to the current Canadian seismic provisions is investigated using Incremental Dynamic Analysis (IDA). Different earthquake types, including shallow crustal events, interface Cascadia subduction, and deep inslab subduction are considered. The median collapse capacities calculated using different record selection methods including Conditional Mean Spectrum (CMS)-based, Uniform Hazard Spectrum (UHS)-based, and epsilon-based methods are compared. The use of the epsilon-based method generally resulted in the highest collapse capacity predictions, but the CMS-based method was less sensitive to the number of records considered in the IDA.  相似文献   
12.
13.
It is still a serious challenge for structural engineers to effectively reduce the seismic responses of tall and super tall buildings to further improve these structural safeties. In order to solve this problem, in this article a new kind of structural configuration, named passive mega-sub controlled structure (PMSCS), is presented, which is constructed by applying the structural control principle into structural configuration itself, to form a new structure with obvious response self-control ability, instead of employing the conventional method. In the analysis of PMSCS the equations of motion of the seismically excited system are developed, based on a realistic analytical model of the complete mega-structural system. Expressions of the displacement and acceleration response of the structure, resulting from simulated earthquake ground motions represented by stationary and nonstationary random processes, are derived. These responses are then determined for both the PMSCS and its conventional mega-sub structure (MSS) counterpart, whose configuration was modeled after the traditional mega-frame that was used in the construction of the Tokyo City Hall. A parametric study of the structural characteristics that influence the response control effectiveness of the PMSCS is presented and discussed. The region over which these structural characteristics yield the optimum seismic response control of the PMSCS is identified and serves as a very useful design tool for practitioners. The study illustrates that the proposed PMSCS offers an effective means of controlling the seismic displacement and acceleration response of tall/super-tall mega-systems. It also overcomes shortcomings exhibited in earlier proposed mega-sub controlled structural configurations.  相似文献   
14.
This article proposes a damage index for the seismic analysis of Reinforced Concrete members using the hysteretic energy dissipated by a structural member and a drift ratio related to failure in the structure. The index was calibrated against observed damage in laboratory tests of 76 RC column units under various protocols. Values obtained in this calibration had acceptable agreement with the levels of damage observed in the test specimens. An analysis of the parameters involved in the definition of the proposed damage index shows the importance of displacement history in the drift ratio capacity of structures.  相似文献   
15.
Superelastic Shape Memory Alloys (SE SMAs) are unique alloys that have the ability to undergo large deformations and return to their undeformed shape by removal of stresses. This study aims at assessing the seismic behavior of beam-column joints reinforced with SE SMAs. Two large-scale beam-column joints were tested under reversed cyclic loading. While the first joint was reinforced with regular steel rebars, SE SMA rebars were used in the second one. Both joints were selected from a Reinforced Concrete (RC) building located in the high seismic region of western Canada and designed and detailed according to current Canadian standards. The behavior of the two specimens under reversed cyclic loading, including their drifts, rotations, and ability to dissipate energy, were compared. The results showed that the SMA-reinforced beam-column joint specimen was able to recover most of its post-yield deformation. Thus, it would require a minimum amount of repair even after a strong earthquake.  相似文献   
16.
Self-centering ability of unbonded post-tensioned precast concrete shear walls has been attributed to the presence of post-tensioning force. However, the experimental results presented in this paper indicate that the post-tensioning force may completely die out during cyclic loading while the walls are able to retain their superior self-centering characteristic. Moreover, the analytical study presented in this article indicates that with proper configuration of end-anchorages for post-tensioned tendons, self-centering of post-tensioned walls can be achieved even when the post-tensioning force vanishes. This study also investigates the effects of tendon layout, tendon end-anchorage configuration, and external vertical load on the self-centering ability of unbonded precast concrete shear walls subjected to earthquake loading.  相似文献   
17.
A displacement-based design (DBD) procedure for buildings equipped with different seismic isolation systems is proposed. It has been derived from the Direct Dispaced-Based Design (DDBD) method recently developed by Priestley et al. [2007] Priestley, M. J. N., Calvi, G. M. and Kowalsky, M. J. 2007. Displacement-Based Seismic Design of Structures, Pavia, , Italy: IUSS Press.  [Google Scholar]. The key aspect of the proposed procedure is the definition of a target displacement profile for the structure. It is assigned by the designer to achieve given performance levels, expressed in terms of maximum displacement of the isolation system and maximum interstory drift. The proposed design procedure has been developed for four different idealized force-displacement relationships, which can describe the cyclic response of a wide variety of isolation systems, including: (i) Lead-Rubber Bearings (LRB); (ii) High-Damping Rubber Bearings (HDRB); (iii) Friction Pendulum Systems (FPS); and (iv) Combinations of lubricated Flat Sliding Bearings (FSB) with different re-centering and/or energy dissipating auxiliary devices. In this article, the background and implementation of the design procedure is presented first. It is followed by the results of validation studies based on nonlinear time-history analyses on different design configurations of base isolated buildings.  相似文献   
18.
The aim of this study was to apply Nakamura's technique to Valencia city center, after some preliminary tests in Barcelona. Previous studies of Barcelona had measured periods in restrictive conditions and in various types of material ranging from very soft soil (with a predominant period of approximately 2 s) to rock (0.3 s), and under different measurement conditions. The Valencia city center measurements were taken by using the distance from buildings and car and pedestrian traffic to construct a measurement grid that was as regular as possible. We also estimated possible soil-structure interaction to detect potential vulnerability.  相似文献   
19.
20.
This study develops seismic fragility curves for vertical-pile-supported wharves commonly found in the western United States. Nonlinear time-history analyses of a two-dimensional numerical model under two ground motion suites are performed. The results show that the jumbo container cranes increase by 10.8% in the wharf deck drift. By using the experiment-based limit states, the proposed fragility curves demonstrate that, at a PGA of 0.50 g, the probabilities of exceeding slight, moderate, extensive, and complete limit states are approximately 23.0%, 7.0%, 4.0%, and 3.0%, respectively, while at a PGA of 1.00 g, the exceeding probabilities increase to 44.0%, 19.0%, 14.0%, and 11.0%, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号