首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   16篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   32篇
  2018年   48篇
  2017年   12篇
  2016年   4篇
  2015年   4篇
  2014年   45篇
  2013年   227篇
  2012年   12篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2002年   3篇
  2001年   4篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
排序方式: 共有463条查询结果,搜索用时 15 毫秒
401.
The Natural Resources Building (NRB) in Olympia, Washington, was shaken by three earthquakes (Mw = 5.8, 6.8, and 5.0) between 1999 and 2001. Building motions were recorded on digital accelerographs, providing important digital recordings of repeated strong shaking in a building. The NRB has 5-stories above grade with 3 sub-grade levels and a ductile steel-frame elongated in the E-W direction. The upper two floors extend significantly beyond the lower 3 on the southern and eastern sides. N-S motions dominate the fundamental modal vibrations of the building system. In the 1999 Satsop M5.8 earthquake, the frequency of this fundamental system mode was 1.3 Hz during motions of 10% g. The frequency dropped to 0.7 Hz during the 2001 M6.8 Nisqually strong motions. Moreover, the Nisqually recordings reveal both numerous high-frequency transients of up to 0.18 g, several of which are visible on widely spaced sensors, and long-term tilts of some of the sensors. The weaker 2001 M5.0 Satsop earthquake motions showed the frequency remained depressed at less than 1 Hz for the eastern side of the structure, although the western side had recovered to 1.3 Hz. An ambient noise survey in 2008 showed the fundamental frequency of N/S vibrations remains about 1.0 Hz for the eastern side of the building and 1.3 Hz for the western side. These results suggest that in the Nisqually earthquake, the east side of the NRB suffered a permanent reduction in fundamental mode frequency of 37% due to loss of system stiffness by undetermined mechanism.  相似文献   
402.
This article is the second of two companion articles that evaluate seismic hazard in northwestern (NW) Pakistan. Using the properties and characteristics of discrete faults in NW Pakistan described in the first article, probabilistic and deterministic seismic hazard analyses for 11 major cities in NW Pakistan were conducted. The results from both probabilistic and deterministic seismic hazard analyses exhibit good agreement. Median deterministic spectra compare favorably with uniform hazard spectra (UHS) for 475- or 975-year return periods, while the 84th-percentile deterministic spectra compare favorably with the UHS for a 2475-year return period. Peak ground accelerations (PGAs) for 2475-year return periods exceed 1.0 g for the cities of Kaghan and Muzaffarabad, which are surrounded by major faults. The PGAs for a 475-year return period for these cities are approximately 0.6g — 3 to 4 times greater than estimates by previous studies using diffuse areal source zones. The PGAs for some cities located farther from faults (including Astor, Malakand, Mangla, Peshawar, and Talagang) are similar to those predicted using diffuse areal source zones. Seismic hazard maps for PGA and spectral accelerations at periods of 0.2 s and 1.0 s corresponding to three return period (2475, 975, and 475 years) were produced. Based on deaggregation results, a discussion of the conditional mean spectra for engineering applications is presented.  相似文献   
403.
Previous experimental research on shear walls has mainly focused on load carrying capacity, deformation, or hysteretic characteristics, with relatively little attention paid to individual damage states and their corresponding responses during the entire loading process until failure. The damage behavior of seven reinforced concrete shear wall specimens subjected to cyclic loading is presented in this study. The effects of the axial load ratio, transverse reinforcement ratio of confining boundary elements, and cross-section shape on damage characteristics, ductility, shear deformation, and crack width of the specimens were analyzed comprehensively.  相似文献   
404.
The SAFE experimental programme consists of a series of 10 specimens of shear walls, with different reinforcement ratios, tested until their ultimate capacity under seismic input motion by the pseudo dynamic method. A unique input signal is used, calibrated for controlling the seismic demand. Its input central frequency is selected so that for some specimens it is lower than their eignenfrequency, while for other ones it is the opposite. In conclusion there is clear experimental evidence that design margins are much larger in the second case (input central frequency larger than structure eignenfrequency) than in the first one.  相似文献   
405.
This article describes a novel, small-scale nonlinear beam-column connection and an associated six-story frame test structure for the experimental dynamic response investigation of multi-story buildings subjected to earthquake loading. The objective is to create a re-configurable, reusable experimental platform on which several aspects of nonlinear dynamic response can be investigated through successive, exhaustive testing under suites of earthquake records. Static and dynamic calibration tests demonstrate excellent test-to-test repeatability of four structure configurations. These results confirm that the properties of each configuration (period, strength, energy dissipation) remain invariant, thus allowing future experimental investigations (e.g., of peak engineering demands) under earthquake loading.  相似文献   
406.
Dynamic response of gravity type retaining wall under seismic load is a topic of considerable research for the last 90 years or more. The concept of deriving dynamic pressure based on rigid body mechanics as proposed by Mononobe and Okabe (M-O method) in 1929 continues to dominate the majority of the codes around the world, although it is reported in a number of cases that the M-O method underestimates the response in many cases. Although the M-O method was originally derived for cohesion less soil yet it is used frequently in deriving pressure for other general soil conditions also, like c-φ soil, c-φ soil with surcharge, etc.

This article is an attempt to predict the response of a gravity wall having a generalized backfill (i.e., c-φ soil with surcharge q and that could also be partially saturated) considering its structural deformation as well as the effect of dynamic soil structure interaction (DSSI), a phenomenon which is often ignored in practice. The results are finally compared with a 2-D finite element analysis carried out in ANSYS to check its validity.  相似文献   
407.
In this article, one of the procedures proposed in literature for the design of viscous dampers to be inserted in existing buildings is examined and extended to 3D eccentric buildings. The proposed procedure has been verified through a case study characterized by a six-story RC building. Both plan-symmetric and plan-asymmetric configurations have been considered for comparisons. The effect of considering the plan-asymmetry in the design has been studied. Moreover, also the importance of considering the higher modes has been investigated. The effectiveness of the design procedure has been then evaluated through the comparison with nonlinear dynamic analyses.  相似文献   
408.
This article introduces a generic modeling approach that is suitable for static and dynamic analysis, and response assessment of highway bridges with varying levels of irregularities. The proposed approach and modeling recommendations are based on grillage modeling rules that allows explicit representation of various types of details and components. The validity and accuracy of the proposed approach is demonstrated against three-dimensional finite element models as well as experimentally recorded response various benchmark bridges. While achieving remarkable accuracy, the required analysis time was also reduced up to 80%, making the proposed approach suitable for computationally intensive studies.  相似文献   
409.
Much research in recent years has focused on the seismic analysis of concrete and earthfill dams, and few works have addressed the case of masonry dams. The structural behavior of masonry dams is controlled essentially by its discontinuous nature, which may induce significant nonlinear response during an intense earthquake. In this article, a numerical tool based on the Discrete Element Method is presented, aimed at the static, dynamic, and hydromechanical analysis of masonry gravity dams. The use of discontinuous models is mandatory for the study of failure mechanisms involving the masonry discontinuities, the dam-rock interface or the rock mass joints. The Discrete Element Method is able to assemble continuous and discontinuous meshes simultaneously in the same model, providing a versatile tool to consider various assumptions and levels of analysis, ranging from simplified to detailed structural representations. A comprehensive study of the seismic behavior of Lagoa Comprida Dam, located in Portugal, is presented. Both continuous and discontinuous models were developed to assess the main failure mechanisms, including overstress, partial and global sliding, and overturning.  相似文献   
410.
A period-independent approach for the selection and scaling of ground motion records aimed at reducing demand variability is proposed for seismic response history analysis. The same set of scaled records can be used to study various structures at the same site regardless of their dynamic characteristics. The statistical robustness of the proposed and current approaches is compared through nonlinear inelastic dynamic analyses performed on single-degree-of-freedom systems and multi-story braced frames. The proposed approach leads to consistent response predictions with a limited number of records. This is advantageous for day-to-day structural design or assessment against code hazard-based seismic demand levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号