首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   16篇
  463篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   3篇
  2020年   6篇
  2019年   32篇
  2018年   48篇
  2017年   12篇
  2016年   4篇
  2015年   4篇
  2014年   45篇
  2013年   227篇
  2012年   12篇
  2011年   5篇
  2010年   4篇
  2009年   7篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2002年   3篇
  2001年   4篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
排序方式: 共有463条查询结果,搜索用时 0 毫秒
141.
Shape memory alloys (SMAs) are a class of materials that have unique properties, including Young's modulus-temperature relations, shape memory effects, superelastic effects, and high damping characteristics. These unique properties, which have led to numerous applications in the biomedical and aerospace industries, are currently being evaluated for applications in the area of seismic resistant design and retrofit. This paper provides a critical review of the state-of-the-art in the use of shape memory alloys for applications in seismic resistant design. The paper reviews the general characteristics of shape memory alloys and highlights the factors affecting their properties. A review of current studies show that the superelastic and high-damping characteristics of SMAs result in applications in bridges and buildings that show significant promise. The barriers to the expanded use of SMAs include the high cost, lack of clear understanding of thermo-mechanical processing, dependency of properties on temperature, and difficulty in machining.  相似文献   
142.
National and international regulatory standards require industrial risk assessment, taking into account natural hazards including earthquakes, in the framework of Quantitative Risk Analysis (QRA). Seismic fragility analysis of industrial components may be carried out similarly as what has been done for buildings, even though some peculiar aspects require the development of specific tools. In the present paper a contribution to the definition of a rational procedure for seismic vulnerability assessment of standardised industrial constructions in a probabilistic framework is given. The method covers a range of components of the same structural type. Seismic reliability formulation for structures is used. Both seismic capacity and demand are considered probabilistic with the latter assessed by dynamic analyses. The application example refers to shell elephant foot buckling of unanchored sliding tanks. A regression-based method is applied to relate fragility curves to parameters varying in the domain of variables for structural design.  相似文献   
143.
This article presents the results of an exhaustive parametric analysis which compares the performances offered by various systems (which lead to both classical and non classical damping matrices) of added viscous dampers in shear-type structures. The aim of the research work here presented is the identification of the system of added viscous dampers which maximizes the dissipative properties under an equal “total size” constraint. The choice of the systems of added viscous dampers considered in the comparison is carried out both using a numerical approach (based upon the use of genetic algorithms) and a physically based approach (based upon the properties of classically damped systems). The comparison is carried out through the numerical evaluation of the dynamic response of representative shear-type structures to both stochastic and recorded earthquake inputs. The results obtained using both approaches indicate that a damping system based upon the mass proportional damping component of the Rayleigh viscous damping matrix (referred to as MPD system) is capable of optimizing simultaneously a number of different performance indexes, providing the best “overall” damping performances. The MPD system is characterised by viscous dampers (a) which connect each floor to a fixed point and (b) which are sized proportionally to the corresponding floor mass.  相似文献   
144.
A very useful tool for the preliminary design of structures is the elastic demand spectrum that can be used in the capacity spectrum method. A pseudo-acceleration relationship has to be assumed when constructing a demand spectrum. This assumption results in large errors for long period structures with large damping ratios and the conventional demand spectra require a substitute elastic structure. In the present study, the conventional demand spectra are extended to bi-linear models. Pseudo-acceleration is still assumed but results in acceptably small errors, when a constant viscous damping coefficient for a single-degree-of-freedom (SDF) structure is calculated from the tangent stiffness and the damping ratio is set at 5% in both elastic and yield phases. For nonlinear structures, tangent stiffness dependency of damping force could be acceptable because energy absorption is primarily the result of structural nonlinear deformation. To extend the conventional demand spectra to a bi-linear model, effective period calculated from the secant stiffness has to be used. The use of effective period introduces no approximation because the peak displacement of the SDF structure is computed from nonlinear analysis in the time domain. The method presented in this study is also valid if damping coefficient proportional to initial elastic spectra is used. In this case, the pseudo-acceleration is defined as the base shear coefficient that is required to produce the peak displacement of the SDF structure in a static manner. We present demand spectra of bi-linear models for a number of near-source records from large earthquakes, and spectral ratios of two horizontal components. The effects of different types of ground motion on the response reduction factor due to inelastic deformation are investigated.  相似文献   
145.
The article presents seismic resistance evaluation study of unreinforced brick masonry buildings. The study was carried out as part of the Ph.D. research work of the first author. As part of the study, in addition to the standard laboratory tests, a dynamic field test was carried out on single-story, single-room unreinforced masonry structure. The model structure was tested in actual ground conditions against simulated earthquake vibrations produced through controlled explosions, especially designed for this purpose. Based on masonry properties accrued from lab and field tests, finite element models of the brickwork system were also studied. Finally, the software named, “Shear Damage Index (SDI),” developed as part of this study, was used to plot contours of shear demand (shear stress) to shear capacity (shear strength) ratio on the numerical model and hence to identify potential weak zones in the model for possible strengthening of those locations.  相似文献   
146.
In this article a study is presented of the inelastic seismic performance of two 5-story reinforced concrete wall specimens, which were tested in the context of the CAMUS 2000 program. The structure has been sized and detailed following the French PS92 code. To investigate the simplifying assumptions made in design, a 3-D refined nonlinear analysis was conducted. Particular aspects of the behavior of the two tested specimens are presented and then test results are compared with numerical predictions. The experimental-analytical comparisons not only demonstrate the accuracy of the time-history analysis model, but also allow obtaining more detailed information about the behavior of the specimen when it is subjected to seismic excitation. The significant effect of degradation of the stiffness and strength of the wall suggests that it is always important that design procedures are derived from numerical modeling and experimental observations.  相似文献   
147.
Issues related to multi-components seismic response analysis are critically reviewed and their implications with respect to the current codified approaches are studied. The issues specifically addressed are: (1) the directions of earthquake forces to excite a structure when the direction of the potential epicenter is known; (2) different commonly used combination rules to obtain the critical response when responses are available in different directions; and (3) the applicability of the combination rules for elastic and inelastic analyses. Based on an extensive parametric study consisting of three-dimensional 1-, 3-, 8-, and 15- story buildings made of moment-resisting steel frames and 20 recorded earthquakes, it is observed that the principal components produce larger responses than the normal components. The 30% and SSRS rules generally underestimate the axial loads in columns. The 30% combination rule is slightly better than the SSRS rule. For both rules, the uncertainty in the estimation of the axial loads in terms of COV is very large (about 25%). The statistics obtained for axial loads and total base shear indicate that the combination rules are applicable for both elastic and inelastic cases. The critical response could be obtained for an orientation different from that of the principal components. The differences are found to be slightly greater for the scaled earthquakes producing a considerable inelastic behavior. Considering the enormous amount of efforts needed to address the directionality effect, it is believed that the responses obtained by the principal components will be acceptable in most cases; however, for critical structures the components should be rotated to obtain the critical responses.  相似文献   
148.
The influence of masonry infills with openings on the seismic performance of reinforced concrete (R/C) frames that were designed in accordance with modern codes provisions is investigated. Two types of masonry infills were considered that had different compressive strength but almost identical shear strength. Infills were designed so that the lateral cracking load of the solid infill is less than the available column shear resistance. Seven 1/3 – scale, single–story, single–bay frame specimens were tested under cyclic horizontal loading up to a drift level of 40%. The parameters investigated are the opening shape and the infill compressive strength. The assessment of the behavior of the frames is presented in terms of failure modes, strength, stiffness, ductility, energy dissipation capacity, and degradation from cycling. The experimental results indicate that infills with openings can significantly improve the performance of RC frames. Further, as expected, specimens with strong infills exhibited better performance than those with weak infills. For the prediction of the lateral resistance of the studied single-bay, single-story infilled frames with openings, a special plastic analysis method has been employed.  相似文献   
149.
This paper presents a probabilistic seismic hazard assessment of Tehran, the capital of Iran. Two maps have been prepared to indicate the earthquake hazard of Tehran and its vicinity in the form of iso-acceleration contour lines. They display the probabilistic estimate of Peak Ground Acceleration (PGA) over bedrock for the return periods of 475 and 950 years. Tehran is a densely populated metropolitan in which more than 10 million people live. Many destructive earthquakes happened in Iran in the last centuries. It comes from historical references that at least 6 times, Tehran has been destroyed by catastrophic earthquakes. The oldest one happened in the 4th century BC. A collected catalogue, containing both historical and instrumental events and covering the period from the 4th century BC to 1999 is then used. Seismic sources are modelled and recurrence relationship is established. For this purpose the method proposed by Kijko [2000] was employed considering uncertainty in magnitude and incomplete earthquake catalogue. The calculations were performed using the logic tree method and three weighted attenuation relationships; Ramazi [1999], 0.4, Ambraseys and Bommer [1991], 0.35, and Sarma and Srbulov [1996], 0.25. Seismic hazard assessment is then carried out for 12×11 grid points using SEISRISK III. Finally, two seismic hazard maps of the studied area based on Peak Ground Acceleration (PGA) over bedrock for 10% probability of exceedance in two life cycles of 50 and 100 years are presented. The results showed that the PGA ranges from 0.27(g) to 0.46(g) for a return period of 475 years and from 0.33(g) to 0.55(g) for a return period of 950 years. Since population is very dense in Tehran and vulnerability of buildings is high, the risk of future earthquakes will be very significant.  相似文献   
150.
A simple and general method based on well-known random vibration theory is used to compute spectral attenuation relations at soft sites based on existing spectral attenuation relations at rock sites. The method consists of: (1) computation, for given magnitude and distance, of the expected Fourier amplitude spectrum associated with the median rock response spectrum computed with the attenuation relation; (2) inclusion of site effects characterized by a frequency-dependent, linear, or nonlinear transfer function; and (3) computation of the response spectrum at the soft site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号