首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   1篇
  2023年   1篇
  2020年   2篇
  2019年   20篇
  2018年   37篇
  2016年   2篇
  2015年   2篇
  2014年   27篇
  2013年   156篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  1978年   1篇
排序方式: 共有262条查询结果,搜索用时 15 毫秒
31.
Symmetrically reinforced bridge columns with a horizontal cantilever in one direction, called C-bent columns, tend to deform predominantly in the direction of applied moment when subject to strong earthquake shaking. For this reason, the strength in the direction of applied moment is generally increased in design. This article describes the use of inelastic dynamic time history analyses with a suite of ground motion records to quantify the amount of strength increase required to minimize likely peak and permanent displacement demands. It is shown that the strength should be increased by approximately 2.3 times the applied moment in design.  相似文献   
32.
In this article, an experimentally validated model is proposed in order to take into account main sources of performance degradation that could be experienced by friction-based devices during a seismic event. Particular attention is dedicated to the degradation of friction characteristics due to repetition of cycles and consequent temperature rise. This effect can be responsible for overestimate of the dissipation capacity of the device. The proposed model of frictional behavior is suitable for immediate implementation in generalized structural analysis codes and provides an important design tool for realistic assessment of the seismic response of structures equipped with friction-based isolators.  相似文献   
33.
Elastomeric pad bearings are widely applied in short- to medium-span girder bridges in China, with the superstructure restrained by reinforced concrete (RC) shear keys in the transverse direction. Field investigations after the 2008 Wenchuan earthquake reveal that bearing systems had suffered the most serious damage, such as span falling, bearing displaced, and shear key failure, while the piers and foundations underwent minor damage. As part of a major study on damage mechanism and displacement control method for short- to medium-span bridges suffered in Wenchuan earthquake, a 1:4 scale, two-span bridge model supported on elastomeric pad bearings were recently tested on shake tables at Tongji University, Shanghai. The bridge model was subjected to increasing levels of four seismic excitations possessing different spectral characteristics. Two restraint systems with and without the restraint of RC shear keys were tested. A comprehensive analytical modeling of the test systems was also performed using OpenSees. The experimental results confirmed that for the typical bridges on elastomeric pad bearings without RC shear keys, the sliding effect of the elastomeric pad bearings plays an important role in isolation of ground motions and, however, lead to lager bearing displacement that consequently increases the seismic risk of fall of span, especially under earthquakes that contain significant mid-period contents or velocity pulse components. It is suggested from the test results that RC shear keys should be elaborately designed in order to achieve a balance between isolation efficiency and bearing displacement. Good correlation between the analytical and the experimental data indicates that the analytical models for the bearing and RC shear key as well as other modeling assumptions were appropriate.  相似文献   
34.
The design focus for a buckling-restrained braced frame (BRBF) is that the buckling-restrained braces (BRBs) dissipate most of the seismic energy while the main frame retains a degree of elastic stiffness under a major earthquake. An elastic displacement spectrum based design method is presented in this article, which can directly determine the sectional area of the BRBs. The yield displacement in the roof of the main frame is taken as the target displacement under a major earthquake. An elastic displacement design spectrum is used to solve the target period of the BRBF. To validate this method, a six-story buckling-restrained braced steel frame is designed using the proposed method, and a series of nonlinear response history analyses (RHAs) are performed to verify the design result. The example shows that the required BRB area can be simply and accurately determined by the proposed method. The error between the given target displacement and the RHA results is 4.0% and 21.3% for BRBFs designed with BRB yield strength of 235 Mpa and 100 Mpa, respectively.  相似文献   
35.
The assessment of human or economic losses due to single events (scenario) may effectively support decision makers in the development of important risk mitigation actions. The study presented herein sheds light on several problems and limitations in the current practice of scenario loss modeling, such as: the number of simulations required to achieve convergence; epistemic and aleatory uncertainty in the ground motion prediction and vulnerability models; and consideration of the earthquake rupture geometry. These issues are investigated using the Metropolitan Area of Lisbon (Portugal), and it has been observed that distinct assumptions in the loss modeling can lead to considerably different results. The findings of this study are also pertinent for probabilistic seismic risk analyses in which a large number of stochastically generated events are employed to assess probabilistic losses.  相似文献   
36.
Comparative study of numerically and experimentally obtained seismic responses of un-reinforced masonry building supported on in-house designed un-bonded fibre reinforced elastomeric isolator (U-FREI) are presented in this article. The effectiveness of U-FREI is established very clearly in terms of controlled dynamic response of the model building. Experimental studies are carried out on a shake table with elaborate instrumentations for measurement of acceleration and displacements at different floor levels. Numerical study of the model building supported on U-FREI is carried out to compare the results with experimental investigation. Multi-linear pivot hysteretic plasticity model is used to simulate the behavior of FREI, while plate elements are used for brick-masonry walls. Experimentally obtained force-displacement curves of FREI are used for defining the properties of multi-linear model representing FREI. The dynamic responses obtained from the numerical studies are compared with those from experimental investigations. This study indicates that the seismic responses of building supported on U-FREI can be numerically evaluated with quite reasonable accuracy. A good numerical model can be judiciously used at the preliminary design stage, followed by actual testing and construction of the base isolated building.  相似文献   
37.
In the last decades, particular attention has been paid to the seismic vulnerability of existing reinforced concrete buildings designed for gravity loads only. Such buildings, designed before the introduction of capacity design in modern seismic codes, are very common, particularly in seismic prone countries of the Mediterranean area. Due to poor detailing and lacking of capacity design principles, high vulnerability has been highlighted in several past studies. In this article, inadequate seismic response and peculiar damage pattern are investigated by means of shake table tests performed on a 1:2 scaled 3-story infilled prototype. Particular attention is given to the role of beam-column joints and frame-panel interaction. The effectiveness of the EC8-based assessment approach is then evaluated; both linear and nonlinear numerical models, with different levels of sophistication, have been implemented in order to explore their behavioral aspects.  相似文献   
38.
Field ambient vibration tests and modal identification using a Bayesian approach are conducted for a building made of multi-grid composite wall structure and divided into two adjacent parts by a seismic joint, to investigate the dynamic characteristics of the special structural type and the effects of the infilled seismic joint. It is found that dynamic interactions between the two structural parts exist possibly induced by the infill of the building separation. Natural frequencies obtained from other two modal parameter identification methods and modal analysis results of finite element models considering dynamic interactions agree with those identified by the Bayesian approach.  相似文献   
39.
The effect of excess pore pressure developed in backfill soil during earthquake is an important consideration in rotational displacement prediction of gravity quay walls. Based on Newmark’s sliding block concept and stress-based excess pore pressure model, a new method is proposed to predict the critical rotational acceleration and angular acceleration time histories considering the development process of excess pore pressure in earthquake events. Then, the rotational displacement of gravity quay walls is predicted according to the calculated angular acceleration time histories. By using the proposed method, the effects of various parameters involved in the calculation have been studied by carrying out a parameter study. Analysis results reveal that the influence of excess pore pressure on the rotational displacement of gravity quay walls with saturated backfill soil is significant, so, can not be ignored; and rotational displacement is sensitive to the magnitude of earthquake, horizontal and vertical seismic accelerations of ground motion, wall and soil friction angle, and soil relative density. When the rotation and sliding of wall occur simultaneously, rotation and sliding will be inhibited by each other.  相似文献   
40.
Abstract

In view of the compendium of field evidence and supporting analysis work indicating the possible damaging effects of vertical earthquake ground motion, this paper addresses the problem of code-type vertical force calculation. In light of recent engineering seismology studies of the relationship between vertical and horizontal peak ground acceleration, the inadequacy of the 2/3-rule depicted by codes is highlighted. A simple piece-wise linear relationship is proposed and shown to represent existing strong-motion measurements adequately. Bilinear and inelastic spectra are derived and studied. It is demonstrated that net tensile forces and displacements may ensue, thus eroding the shear resistance of RC columns. A simple procedure is outlined whereby modal analysis may be employed to estimate conservatively vertical earthquake forces on buildings. Finally, areas of further exploration and refinement are identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号