首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   1篇
  2023年   1篇
  2020年   1篇
  2019年   21篇
  2018年   37篇
  2016年   2篇
  2015年   2篇
  2014年   26篇
  2013年   146篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  1978年   1篇
排序方式: 共有246条查询结果,搜索用时 15 毫秒
81.
Using representative numerical models of eight code-designed steel moment-resisting frame buildings and several ground motions, time-history analyses are performed and a critical evaluation of Peak Horizontal Floor Acceleration (PHFA) demands is conducted. The frames are modeled alternatively as linear and nonlinear systems to isolate the effect of building nonlinearity on PHFA. In most cases, PHFA is reduced when nonlinear behavior of a building is considered; however, in some cases, significant amplification of PHFA is observed. Results from the numerical study provide insight into the trend of modal response modification factors presented taking ground motion spectral shape into account.  相似文献   
82.
This article presents a novel approach for deriving Retrofit Design Spectra (RDS) that are intended for use in preliminary development and assessment of seismic upgrading scenarios of existing structures. The new spectral representation relates the characteristics of the intervention method chosen as the core of the upgrading strategy, with the ductility and strength demand of the retrofitted structure. The methodology utilized for the derivation of the RDS is based on the Capacity Spectrum Method where the capacity curve is described by relationships for global and local intervention methods that are parameterized in terms of fundamental response quantities. The proposed spectra provide direct insight into the complex interrelation between the characteristics of the intervention method and the implications of the upgrading scenario on demand. Alternative retrofit solutions are thus assessed in an efficient way. A case study is used to illustrate practical application of the new approach.  相似文献   
83.
The seismic response of base-isolated benchmark building with variable sliding isolators like variable friction pendulum system (VFPS), variable frequency pendulum isolator (VFPI), and variable curvature friction pendulum system (VCFPS), along with conventional friction pendulum system (FPS), was studied under the seven earthquakes. The earthquakes are applied bi-directionally in the horizontal plane ignoring vertical ground motion component. The shear type base-isolated benchmark building is modeled as three-dimensional linear elastic structure having three degrees of freedom at each floor level. Time domain dynamic analysis of the benchmark building was carried out with the help of constant average acceleration Newmark-Beta method and nonlinear isolation forces was taken care by fourth-order Runge-Kutta method. The base-isolated benchmark building is investigated for uniform isolation and hybrid isolation in combination with laminated rubber bearings through the performance criteria and time history response of important structural response parameters like floor accelerations, base displacement, etc. It is observed that variable sliding isolators performed better than conventional FPS due to their varying characteristic properties which enable them to alter the isolator forces depending upon their isolator displacements thus improves the performance of the structure. The VFPS efficiently controls large isolator displacements and VFPI and VCFPS improve super structural response on the cost of isolator displacement. It is also observed that the hybrid isolation is relatively better in comparison to the uniform isolation for the benchmark building.  相似文献   
84.
This article attempted to improve the isolation performance of a rolling isolation system by assuming that the rolling friction force gradually and linearly increased with the relative displacement between the isolator and the ground. After the rolling isolation system under different ground motions was calculated by a numerical analysis method, it obtained more regular results than that of other uneven friction distributions. Results shows that the considered concavely distributed friction force can not only dissipate the earthquake energy, but also change the structural natural period. These functions improve the seismic isolation efficiency of the structural relative displacement in comparison with the general uniform distribution of rolling friction coefficient.  相似文献   
85.
There are various possibilities for the selection and scaling of ground motions for advanced seismic assessment of buildings using nonlinear response-history analyses. As part of an on-going project looking at building-specific loss assessment in Italy, this article highlights a number of challenges currently facing the use of conditional spectra for ground motion selection in practice, essentially related to the limited amount of seismic hazard information that is publicly available. To illustrate the points being made, the challenges faced when trying to develop conditional spectra and select spectrum-compatible accelerograms for a rock site in Napoli, Italy, are described and the seismic assessment results obtained for a number of reinforced concrete wall structures are presented. Aside from providing practitioners with an appreciation of the potential difficulty associated with using conditional spectra for record selection, this technical note should also motivate national authorities to provide more background information on national seismic hazard data and detailed guidance for record selection.  相似文献   
86.
T-shaped slender reinforced concrete (RC) structural walls are commonly used in medium-rise and high-rise buildings as part of lateral force resisting system. Compared to its popularity, experimental results on seismic performance of these walls are relatively sparse, especially for data regarding these walls in the non-principal bending directions. This article aims at providing additional experimental evidence on seismic performance of T-shaped RC structural walls. Experimental results of six T-shaped RC walls were presented. These walls resemble the structural walls found in existing buildings in Singapore and possess slightly inferior details compared to the requirements of modern design codes. The test variables were the loading direction and the axial load ratio. The experimental results were discussed in terms of the failure mechanisms, cracking patterns, hysteretic responses, curvature distributions, displacement components, and strain profiles. In addition, the experimental results were compared with methods commonly adopted in current design practice including the nonlinear section analyses, shear strength models and effective width of the tension flange. The experimental data illustrate that the shear lag effect not only was not accurately accounted for by the effective width method but also significantly affected the strength and stiffness of the tested specimens.  相似文献   
87.
This study proposes an “optimal” spectral acceleration-based intensity measure (IM) to assess the collapse capacity of highly inelastic frame structures vulnerable to the P-delta effect. The IM is derived from the geometric mean of the spectral pseudo-acceleration over a certain period interval. The lower bound period of the averaging interval is related to the mode in which 95% of the effective modal mass is exceeded. The upper bound period is 1.6 times the fundamental period. This IM provides minimum, or close to the minimum, dispersion for frames with different fundamental periods of vibration, or number of stories.  相似文献   
88.
The column members of steel moment frames undergo high axial forces as well as inelastic rotations during a severe seismic event. The boundaries of these simultaneous structural demands on the columns of special moment frames have been investigated in this research. Based on the results of this investigation, dual cyclic loading protocols have been developed that represent both axial force and lateral deformation demands. Contrary to other loading scenarios that have been implemented in previous studies on steel columns, the loading protocols developed in this study include simultaneous axial and lateral loading cycles with varying amplitudes. The level of axial forces and story drifts tolerated by the columns of some typical Special Moment Frames (SMFs) has been investigated through performing nonlinear dynamic analyses. These frames have been selected with several configurations and different number of stories. The results of the nonlinear dynamic analyses have been processed to assess cumulative and instantaneous seismic demands on the columns of the chosen typical frames. Subsequently, dual cyclic loading protocols have been developed such that exerting these loading protocols on individual steel columns can result in structural effects close to the general seismic demands assessed in this study. Two separate dual loading protocols have been introduced for Design Earthquake (DE) and Maximum Considered Earthquake (MCE) seismic intensity levels.  相似文献   
89.
The seismic response of bridges is affected by a number of modeling considerations, such as pier embedment, buried pile caps, seat-type abutments, pounding, bond slip and architecturally flared part of piers, and loading considerations, such as non-uniform ground excitations and orientation of ground motion components, which are not readily addressed by design codes. This article addresses a methodology for the nonlinear static and dynamic analysis of a tall, long-span, curved, reinforced-concrete bridge, the Mogollon Rim Viaduct. Various modeling scenarios are considered for the bridge components, soil-structure interaction system, and materials, i.e., concrete and reinforcing steel, covering all its geotechnical and structural aspects based on recent advances in bridge engineering. Various analysis methodologies (nonlinear static pushover, time history response to uniform and spatially variable seismic excitations, and incremental dynamic analyses) are performed. For the dynamic analyses, a suite of nine earthquake accelerograms are selected and their characteristics are investigated using seismic intensity parameters. A recently developed approach for the generation of non-uniform seismic excitations, i.e., spatially variable simulations conditioned on the recorded time series, is used. Methods for the evaluation of structural performance are discussed and their limitations addressed. The numerical results of the seismic assessment of the Mogollon Rim Viaduct are presented in the companion article (Part II). The sensitivity of the bridge response to the adopted modeling, loading and analyzing strategies, as well as the correlation between structural damage and seismic intensity parameters are examined in detail.  相似文献   
90.
The study primarily aims at providing adequate imaging resolution of large and prominent targets of archaeological interest, such as pyramids and tumuli, at all depth levels. We implemented an integrated seismic tomography and georadar (STG) technique to perform high-resolution imaging and characterization of tumuli (burial mounds). We tested the proposed technique on a preserved late Bronze Age burial mound in northern Italy, for which STG succeeded in performing an accurate 3-D reconstruction of the structure and stratigraphy as proved by later archaeological excavations. We completed two transmission seismic tomography measurements, at present ground level and at 1.5 m elevation, with a 24-channel seismograph and 15° angular separation between geophones. The ground-penetrating radar (GPR) dataset encompasses 12 250 MHz radial profiles and 12 common mid point gathers for velocity analysis. Shallow layers of the mound are successfully imaged by GPR, whilst the structure of the deep central part of the tomb is reconstructed from seismic traveltime inversion. In particular, GPR images lenses and layers of sediments forming the external part of the tumulus, evidences of a looting attempt, peripheral structures associated with later exploitation of the mound (furnaces) and, in the external sector of the tumulus, the top of the deep layer of silty sediments covering the funeral chamber. Tomographic results reveal seismic velocity anomalies of potential archaeological interest at ground level, which were successively validated by archaeological excavations. The integration of GPR and tomographic datasets is an effective strategy to overcome the imaging and interpretation problems related to the structure of such peculiar funeral monuments. STG can be applied to a virtually unlimited dimensional range and requires a limited data acquisition, processing and inversion effort. The results of the study allowed the identification of the funeral chamber and a detailed imaging of layering and structural details.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号