首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   0篇
  2023年   1篇
  2020年   1篇
  2019年   8篇
  2018年   15篇
  2014年   10篇
  2013年   70篇
  2012年   2篇
  2011年   2篇
  2007年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
91.
A seismic design procedure is described incorporating the well-accepted property that the stiffness of reinforced concrete elements is strength dependent and the requirement that the method of assigning strength to elements should be aiming at minimum torsional phenomena. Such a response allows a direct comparison with the findings of a static nonlinear analysis, which may provide the limits of story drifts and the induced plastic rotations in potential plastic hinges. The requirement of a practically translational response implies that the element strength assignment should be based on planar considerations and the initially elastic response should be of minimum torsion.  相似文献   
92.
The Seismic Hazard Assessment (SHA) based on probabilistic approach has been carried out for the entire seismically active NW Himalayan Fold and Thrust Belt in Pakistan. Additional information in the form of earthquake catalog, delineation of 41 active faults in a structural map, their relationship to the seismicity, and establishment of seismotectonic zones has also been undertaken.

From the distribution of the 813 events within the study area, it appears that seismicity (≥4.0 Mw) is associated with both surface and blind faults. The clustering of events in specific parts along the surface faults shows that some fault segments, especially in the hinterland zone, are more active. In parts of the active deformational front, like the Salt Range, southern Potwar and Bannu, lesser seismic activity (≥4.0 Mw) could be due to damping effect of the thick Precambrian salt.

A majority of the earthquakes (86%) range in magnitude from 4.0 to 4.9 Mw, followed by 107 events (13%) ranging from 5.0 to 5.9 Mw. The remaining 1% range from 6.0 to 6.7 Mw. There is a predominance of shallow seismicity (<50 km focal depth). Larger magnitudes events are more in the hinterland zone. In contrast, based on distribution of 683 (≥4.0 Mw) events, a deeper level of seismicity (50 to 200 km) prevails especially in the adjoining Hindukush Range of Afghanistan.

Four seismotectonic zones have been established in the area. The b value is highest for the Peshawar-Hazara Seismic Zone (PHSZ) at 1.27, followed by 1.12 for the Surghar-Kurram Seismic Zone (SKSZ). The Swat-Astor Seismic Zone (SASZ) and Kohat-Potwar-Salt Range Seismic Zone (KPSZ) have b values of 0.99 and 1.03, respectively, thereby indicating the occurrence of more events of relatively higher magnitude as compared to the other two zones. The mean activity rate of the earthquakes (λ) ranges from 4.26 to 1.73. In decreasing order, the values are 4.26, 2.62, 2.07, and 1.73 for PHSZ, SASZ, KPSZ, and SKSZ, respectively. Using four regression relationships, the maximum potential magnitude (m1) has been determined for the 4 Quaternary faults. The highest value within each seismic zone represents its m1. Our calculations show that m1 is 7.8 in the hinterland (SASZ and PHSZ) and 7.4 in the foreland part (KPSZ and SKSZ).

SHA, incorporating probabilistic approach, has been undertaken at 10 sites, along with disaggregation at the assigned amplitude of 0.2g. Pakistan does not have an attenuation equation of its own. The two equations of Ambraseys et al. (1996) Ambraseys, N. N., Simpson, K. A. and Bommer, J. J. 1996. Prediction of horizontal response spectra in Europe. Earthquake Engineering and Structural Dynamics, 25: 371400. [Crossref], [Web of Science ®] [Google Scholar] and Boore et al. (1997) Boore, D. M., Joyner, W. B. and Fumal, T. E. 1997. Equations from estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismological Research Letters, 68: 128153. [Crossref] [Google Scholar] have been used and the results obtained using the equation of Boore et al. (1997) Boore, D. M., Joyner, W. B. and Fumal, T. E. 1997. Equations from estimating horizontal response spectra and peak acceleration from western North American earthquakes: a summary of recent work. Seismological Research Letters, 68: 128153. [Crossref] [Google Scholar] have been preferred. In the Probabilistic seismic hazard assessment (PSHA), the PGA values with 10% probability of exceedance in the 50 years, i.e., the return period of 475, have been determined using the EZ-FRISK (6.2 beta version) software. Best-estimated seismic hazard parameters (λ, m1, m0, and the β value) of the four seismic zones were used as the input. Results were generated in the form of total hazard curves. Values obtained range from 0.08g (for Bannu) to 0.21g (for Malakand and Kohat). For the other seven sites they are: Astore (0.082g), Kaghan (0.12g), Muzaffarabad (0.13g), Islamabad and Peshawar (0.15g), Talagang (0.16g), and Mangla (0.18g). High population density and more poorly constructed structures in Rawalpindi (twin city of Islamabad) and Peshawar make them more hazardous.  相似文献   
93.
This article is an attempt to study the effects of a stress pulse simulating strong vertical excitation, particularly at the first steps of the mode of propagation. The structural model represents a two-story single column, having two pairs of cantilever beams on either side. The study is carried out by means of the experimental method of caustics. The areas of maximum stress concentration, as well as the wave front direction within the horizontal elements of the structure, are determined. The influence of the wave and the reflected effects on the top of the column are also studied. The experimental results are compared with the corresponding results obtained by finite element analysis. The results could be used for the development of rules for the effects of the vertical component.  相似文献   
94.
This article presents results from a laboratory investigation into the dynamic characteristics of reconstituted and undisturbed cohesive soils by means of resonant-column tests. In particular, results showing the influence of various soil parameters, such as confining stress, overconsolidation ratio, void ratio, plasticity index, calcium carbonate content, and time of confinement on shear modulus and damping ratio at small and high shear strains are presented and then discussed. Relationships for the small-strain shear modulus, the degradation of shear modulus at high strains, and the increase of damping ratio at high strains over its small-strain value are proposed. Finally, the practical implications of the results in the context of seismic site response analysis are discussed.  相似文献   
95.
Lead-rubber isolators represent a valid and economic solution for the seismic isolation of bridge structures and modern manufacturing techniques make available large devices. Velocity effects on small to medium-scale isolators have been discussed by several authors (e.g., Clark et al., 1997 Clark, P. W., Aiken, I. D. and Kelly, J. M. 1997. Experimental studies of the ultimate behavior of seismically isolated structures, Berkeley, CA: Earthquake Engineering Research Center, University of California. Report No. UCB/EERC-97/18 [Google Scholar]; Thompson et al., 2000 Thomson, A. C., Whittaker, A. S., Fenves, G. L. and Mahin, S. A. 2000. “Property modification factors for elastomeric seismic isolation bearings”. In Proceedings of the 12th World Conference on Earthquake Engineering, New Zealand: Auckand. January [Google Scholar]) as well as included in reports of experimental programs (e.g., CERF, 1999 CERF. Civil Engineering Research Foundation, Summary of evaluation findings for the testing of seismic isolation and energy dissipation devices. CERF Report No. 40404. 1999.  [Google Scholar]). Only recently, however, the behavior of large devices was validated under full-scale displacements, loads, and velocities.

In this article, results obtained from an experimental investigation on the effects of axial load and strain rate on the performance of a full-scale lead-core elastomeric bearing for bridge applications, are reported. The bearing response was analyzed with particular attention to the variation of critical performance characteristics in order to produce a set of information that could be implemented in a physically motivated numerical model.

The results, in line with additional tests performed on similar full-scale bearings at the Caltrans SRMD Testing Facility at the University of California San Diego, indicate a moderate effect of the applied vertical load but a significant effect of the strain rate and cycling on all the significant response parameters. This information should be taken into account by designers, particularly when high component of velocities are associated with the expected seismic motion. A simplified numerical model is proposed for the assessment of lead-rubber bearing performance.  相似文献   
96.
This article deals with evaluation of the seismic vulnerability of a high-voltage vertical disconnect switch, one of the most vulnerable elements of electric substations. The main objective of the research is to evaluate the seismic fragility of the apparatus using a new effective method. By combining standard reliability methods for time-invariant problems with the response surface technique, this original procedure called “EFA” (Effective Fragility Analysis) permits the evaluation of fragility curves using a very limited number of numerical simulations. On the basis of experimental tests, to determine the mechanical characteristics of the disconnect switch components (ceramic, joints, etc.) the fragility curves of the equipment analyzed are carried out. The results are discussed and compared with the results of Monte Carlo simulations, which confirm the reliability of the procedure.  相似文献   
97.
In recent years, the use of carbon fiber sheet (CFS) to provide lateral confinement for enhanced ductility and strength of reinforced concrete bridge columns has been increasing. While the monotonic behavior of CFS-confined concrete has been studied extensively, its cyclic response has not been fully understood. Most of the available studies are experimental investigations, hence there is a need to develop an analytical model to simulate the experimental results. Analysis of the hysteretic behavior of CFS-retrofitted circular columns is presented in this article using the fiber element that is based on cyclic constitutive models of longitudinal reinforcement and concrete confined by both CFS and tie reinforcement. The analysis was verified based on available cyclic test data and the analysis provides good agreement with the experimental results. Results show that flexural strength and ductility of columns wrapped with CFS increases as CFS ratio increases. However, as tie reinforcement ratio increases, there is no much difference on the hysteretic response for low tie reinforcement ratios. Using the fiber element analysis, the effect of CFS retrofit on the seismic response of a 7.5 m tall prototype pier built in the 1970s to 1980s is also clarified.  相似文献   
98.
The M w7.9 Wenchuan earthquake produced a rich set of over 1,400 accelerograms, which helped us to better understand strong ground motions from such a large event. Using the abundant data, we investigated the characteristics of response spectral accelerations from this event. This study includes: the spatial distribution of spectral amplitudes at three periods selected to represent ground motions at short, short-middle, and middle-long period ranges; attenuations of response spectral accelerations at periods between 0.05 and 10 s; comparison between the observed ground motions and predicted motions from empirically based equations [Abrahamson and Silva,1997 Abrahamson, N. N. and Silva, W. J. 1997. Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismological Ressearch Letters, 68: 923. [Crossref] [Google Scholar]; Boore et al., 1997 Boore, D. M., Joyner, W. B. and Fumal, T. E. 1997. Equations for estimating horizontal response spectra and peak acceleration from Western North America earthquakes: a summary of recent work. Seismological Ressearch Letters, 68: 128153. [Crossref] [Google Scholar]; Campbell, 1997 Campbell, K. W. 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seismological Ressearch Letters, 68: 154179. [Crossref] [Google Scholar]; Huo, 1989 Huo, J. R. Ph.D. 1989. Study on the attenuation laws of strong earthquake ground motion near the source, Dissertation, Institute of Engineering Mechanics, China Earthquake Administration. (In Chinese) [Google Scholar]] commonly used in America and China; comparison between the average response spectra at three distance bins and the Chinese seismic design spectra under major earthquake (with the recurrent interval of over 2,000 years);, the vertical-to-horizontal ratio of response spectra and its dependence on the rupture distance, period, and local site condition; and comparison between the fault-normal and fault-parallel component spectral accelerations within the rupture distance of 60 km. Based on these analyses, we finally drew some conclusions regarding the engineering characteristics of spectral accelerations from large earthquakes, such as Wenchuan of M w 7.9.  相似文献   
99.
The Natural Resources Building (NRB) in Olympia, Washington, was shaken by three earthquakes (Mw = 5.8, 6.8, and 5.0) between 1999 and 2001. Building motions were recorded on digital accelerographs, providing important digital recordings of repeated strong shaking in a building. The NRB has 5-stories above grade with 3 sub-grade levels and a ductile steel-frame elongated in the E-W direction. The upper two floors extend significantly beyond the lower 3 on the southern and eastern sides. N-S motions dominate the fundamental modal vibrations of the building system. In the 1999 Satsop M5.8 earthquake, the frequency of this fundamental system mode was 1.3 Hz during motions of 10% g. The frequency dropped to 0.7 Hz during the 2001 M6.8 Nisqually strong motions. Moreover, the Nisqually recordings reveal both numerous high-frequency transients of up to 0.18 g, several of which are visible on widely spaced sensors, and long-term tilts of some of the sensors. The weaker 2001 M5.0 Satsop earthquake motions showed the frequency remained depressed at less than 1 Hz for the eastern side of the structure, although the western side had recovered to 1.3 Hz. An ambient noise survey in 2008 showed the fundamental frequency of N/S vibrations remains about 1.0 Hz for the eastern side of the building and 1.3 Hz for the western side. These results suggest that in the Nisqually earthquake, the east side of the NRB suffered a permanent reduction in fundamental mode frequency of 37% due to loss of system stiffness by undetermined mechanism.  相似文献   
100.
This article describes a novel, small-scale nonlinear beam-column connection and an associated six-story frame test structure for the experimental dynamic response investigation of multi-story buildings subjected to earthquake loading. The objective is to create a re-configurable, reusable experimental platform on which several aspects of nonlinear dynamic response can be investigated through successive, exhaustive testing under suites of earthquake records. Static and dynamic calibration tests demonstrate excellent test-to-test repeatability of four structure configurations. These results confirm that the properties of each configuration (period, strength, energy dissipation) remain invariant, thus allowing future experimental investigations (e.g., of peak engineering demands) under earthquake loading.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号