首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   2篇
  2023年   1篇
  2019年   9篇
  2018年   15篇
  2014年   10篇
  2013年   72篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2005年   1篇
  2003年   2篇
  1997年   1篇
  1991年   1篇
排序方式: 共有120条查询结果,搜索用时 15 毫秒
41.
Experimental tests on four full-scale exterior unreinforced reinforced concrete (RC) beam-column joints, representative of the existing non-conforming RC frame buildings, are carried out. The specimens have different longitudinal reinforcements (plain or deformed) and they are designed in order to be representative of two typical design practices (for gravity loads only or according to an obsolete seismic code). Different failure modes are observed, namely joint failure with or without beam yielding. The local response of the joint panel is analyzed. The different joint deformation mechanisms and their contribution to the deformability and to the energy dissipation capacity of the sub-assemblages are evaluated.  相似文献   
42.
Long-duration ground motions may be down-sampled to speed up the computational process. However, using ground motions with large time step (Δt) would inevitably bring in numerical errors. The influence of Δt on the site effect and structural response analyses was quantitatively examined in this study. The results show that the nonlinear site response method is more sensitive to a change of Δt than the equivalent-linear method. For the structural analysis, the impact of Δt is highly dependent on the magnitude of damage parameters. Thus, using input motions with Δt as 0.005 s is recommended for structures subjected to strong shakings.  相似文献   
43.
This article deals with the finite element analysis of dam with and without fluid-structure, soil-structure and soil-structure-fluid interaction. A two-dimensional direct coupling methodology is proposed to obtain the response of dam-reservoir-foundation system considering fluid-structure and soil-structure interaction simultaneously. The displacement based finite element technique is used to formulate the dam and foundation. The reservoir is modeled by pressure based finite element to reduce the degree of freedoms and there by the computational cost. The responses of dam, reservoir, and foundation with and without fluid-structure, soil-structure and soil-structure-fluid interaction are compared to study the influence of reservoir and soil foundation on the behavior of these respective sub systems. The fundamental frequency of individual sub system decreases with the consideration of coupling effect among these sub systems. On the comparison of the responses of dam, it is observed that the displacement and principal stresses are increased if the effect of reservoir and foundation are considered and the worst responses were observed when both the fluid-structure and soil-structure interaction effects are considered simultaneously. The magnitude and distribution of stresses within the foundation change with the consideration of soil-structure-fluid interaction. Similar to wstresses in the foundation, the hydrodynamic pressure within the reservoir also gets magnified due to interaction effects. The velocity distribution within the reservoir becomes distorted when the fluid-structure and soil-structure-fluid interaction are considered.  相似文献   
44.
Seismic resilience and continued operation of bridges after earthquakes are important seismic design criteria. A new seismic protection concept for integral bridge piers is explored that uses sliding bearings to separate the superstructure from the piers. The influence of sliding bearings on the seismic response of a representative 3-span integral highway bridge is investigated. With sliding bearings, the pier column shear force was limited to the bearing design friction force. Furthermore, the abutment ductility demands were found to be insensitive to the friction forces in the sliding bearings because the bridge displacement demands were controlled by the equal displacement rule.  相似文献   
45.
Three highway bridges spanning the Missouri River flood plain were selected for evaluation of seismic site response for moderate size earthquakes emanating from the New Madrid Seismic Zone (NMSZ) in the Midwestern United States. The NMSZ is known to be capable spawning earthquakes larger than magnitude (M) 7.0, four of which occurred in a three-month period between 1811 and 1812, and the Mw 6.0 earthquake of October 1895 centered near Charleston, Missouri. This study evaluated the likely impacts of long period motion of these historic earthquakes on three long-span highway bridges using geotechnical data obtained from recent investigations. Our results suggest site amplification between 6× and 9×, depending on the magnitude and epicentral distance. We believe that threshold magnitude for serious foundation failure and damage to these bridges is between Mw 6.5 and 6.6. Above these magnitudes widespread liquefaction is predicted, which would effect the peak horizontal acceleration and spectral accelerations, causing the ground motions to be different than predicted. Increase in amplification of the response spectra also should be expected where the periods are higher than 1.0 sec. Therefore, Mw 6.5+ earthquakes at ranges 210–260 km could be expected to engender resonant frequency problems for multiple span bridges and tall buildings (10 to 25 stories) in channel corridors containing 20 to 46 m of unconsolidated sediment.  相似文献   
46.
In this article, a number of design approaches for 3D reinforced concrete (RC) buildings are formulated in the framework of structural optimization problems and are assessed in terms of their performance under earthquake loading. In particular, three design approaches for RC buildings are considered in this study. In the first, the initial construction cost is considered as the objective function to be minimized. The second one is formulated as a minimization problem of the torsional response, while a combined formulation is also examined as the third design approach. The third approach is considered with two distinctive formulations. According to the first approach, the torsional behavior is minimized by minimizing the eccentricity between the mass and rigidity centers, while the second one is achieved by minimizing the eccentricity between the mass and strength centers. It is shown that the optimized designs obtained according to the minimum eccentricity of the rigidity center behave better in frequent (50/50 hazard level) and occasional (10/50 hazard level) earthquakes, while the designs obtained according to the minimum eccentricity of the strength center formulation was found better in rare (2/50 hazard level) events. Designs obtained through a combined formulation seem to behave equally well in the three hazard levels examined.  相似文献   
47.
This article investigates the seismic performance of one-story reinforced concrete structures for industrial buildings. To this aim, the seismic response of two structural prototypes, a cast-in-situ monolithic frame and a precast hinged frame, is compared for four different levels of translatory stiffness and seismic capacity. For these structures an incremental nonlinear dynamic analysis is performed within a Monte Carlo probabilistic simulation. The results obtained from the probabilistic analysis prove that precast structures have the same seismic capacity of the corresponding cast-in-situ structures and confirm the overall goodness of the design criteria proposed by Eurocode 8, even if a noteworthy dependency of the actual structural behavior from the prescribed response spectrum is pointed out.

The experimental verification of these theoretical results is searched for by means of pseudodynamic tests on full-scale structures. The results of these tests confirm the overall equivalence of the seismic behavior of precast and cast-in-situ structures. Moreover, two additional prototypes have been designed to investigate the seismic behavior of precast structures with roof elements placed side by side. The results of these further tests show that an effective horizontal diaphragm action can be activated even if the roof elements are not connected among them, and confirm the expected good seismic performance of these precast systems. Finally, the results of the experimental tests are compared with those obtained from nonlinear structural analyses. The good agreement between numerical and experimental results confirms the accuracy of the theoretical model and, with it, the results of the probabilistic investigation.  相似文献   
48.
A simple stick model is presented for the inelastic seismic analysis in 3D of two-way eccentric multistory RC buildings. It has 3 DoFs per floor, point hinges at the ends of the vertical elements connecting floors, elastic story stiffness derived from the corresponding story force-interstory deformation relations of the elastic 3D structure under inverted-triangular floor loading (by torques for torsional stiffness, by horizontal forces for the lateral ones), story yield forces derived from the total resistant shear of the story vertical elements, but no coupling between lateral and torsional inelasticity. It is evaluated on the basis of comparisons of response histories of floor displacements to those from full nonlinear models in 3D of four actual buildings. Alternative locations of the story vertical element with respect to the floor mass center are examined: (a) the floor “center of twist” of the elastic 3D building under inverted-triangular floor torques; (b) the story “effective center of rigidity,” through which application of inverted triangular lateral forces does not induce twisting of floors; (c) the centroid of the secant stiffness of the story vertical members at yielding and (d) the centroid of the lateral force resistance of story vertical elements. Among alternatives (a)–(d), the floor “center of twist” provides the best agreement with floor displacement response-histories from full 3D nonlinear models. This means that the static eccentricity that matters for torsional response may be taken as that of the floor “center of twist.” The center of resistance comes up as the second-best choice.  相似文献   
49.
This study investigates the effectiveness of the modal analysis using three-degree-of freedom (3DOF) modal equations of motion to deal with the seismic analysis of two-way asymmetric elastic systems with supplemental damping. The 3DOF modal equations of motion possessing the non proportional damping property enable the two modal translations and one modal rotation to be non proportional in an elastic state. The simple approximation method is to use the single degree-of-freedom (SDOF) modal equations of motion, which are obtained by neglecting the off-diagonal elements of the transformed damping matrix. One, one-story and one, three-story non proportionally damped two-way asymmetric buildings under the excitation of bi-directional seismic ground motions are analyzed. The analytical results are obtained by using the proposed method, noted simple approximation method, and direct integration of the equation of motion. It is seen that the proposed method can significantly improve the accuracy of the analytical results compared with those obtained by using the simple approximation method. Moreover, the proposed method does not substantially increase the computational efforts.  相似文献   
50.
Current design codes generally use an equivalent linear approach for preliminary design of a seismic isolation system. The equivalent linear approach is based on effective parameters, rather than physical parameters of the system, and may not accurately account for the nonlinearity of the isolation system. This article evaluates an alternative normalized strength characterization against the equivalent linear characterization. Considerations for evaluation include: (1) ability to effectively account for variations in ground motion intensity; (2) ability to effectively describe the energy dissipation capacity of the isolation system; and (3) conducive to developing design equations that can be implemented within a code framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号