首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   0篇
  2020年   2篇
  2019年   5篇
  2018年   11篇
  2014年   13篇
  2013年   60篇
  2012年   1篇
  2006年   1篇
  2001年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
81.
A 16-story building under construction in Bucharest has been designed according to the provisions of EC2 and EC8, using elastic spectral modal analysis. Considering that the building is torsionally sensitive in the nonlinear range, it was further checked and verified using nonlinear dynamic and static procedures, using a detailed space-frame model. Specifically, time-history analysis for seven different excitations, as well as respective inelastic static analysis taking into account torsional effects were performed. The results are examined regarding structural (global) and member (local) response and various issues concerning the adequacy of the original elastic design and the applicability of advanced analysis methods are discussed.  相似文献   
82.
The present article focuses on a nonlinear static procedure (NSP) for a multi-story asymmetric frame building with regular elevation subjected to bi-directional ground motion. In this procedure, two simplified models—an equivalent single-story model and an equivalent single-degree-of-freedom (SDOF) model—are used to predict the peak response of multi-story asymmetric buildings. The peak response is predicted through pushover analysis of an equivalent single-story model considering the effect of bi-directional excitations and an estimation of the nonlinear response of equivalent SDOF models. The predicted results are compared with the nonlinear dynamic analysis results, and satisfactory predictions can be obtained by the proposed procedure.  相似文献   
83.
Two-story three-bay reinforced concrete frames with and without chevron brace was tested using pseudo dynamic test method. The chevron braces were implemented to the interior span of the RC frame. Chevron-braced frame was observed to be effective to control inter-story drift demands. Based on the observed damage state and dynamic response of the test frames, performance states were discussed for different scales of Duzce ground motions. The test results were compared with the results of the nonlinear time history analysis. The analysis results were capable of estimating the base shear capacity and displacement demands with a reasonable accuracy.  相似文献   
84.
The experimental work focuses on the ductility of the reinforced concrete (RC) seismic structural walls in buildings of mid-rise height. A full-scale five-story structural wall was tested to obtain results, still scarce in literature, without the influence of size effect. An unusual detailing with large diameter longitudinal rebars uniformly distributed in the wall length was adopted to prevent premature web rebar fracture and shear sliding. The plastic hinge length and deformations were evaluated in detail. The results show the high ductility of the wall that reached a total drift of 2.5%, larger than those usually required in design.  相似文献   
85.
Previous experimental research on shear walls has mainly focused on load carrying capacity, deformation, or hysteretic characteristics, with relatively little attention paid to individual damage states and their corresponding responses during the entire loading process until failure. The damage behavior of seven reinforced concrete shear wall specimens subjected to cyclic loading is presented in this study. The effects of the axial load ratio, transverse reinforcement ratio of confining boundary elements, and cross-section shape on damage characteristics, ductility, shear deformation, and crack width of the specimens were analyzed comprehensively.  相似文献   
86.
This article investigates the ductility reduction factors for RC eccentric frame structures subjected to pulse-like ground motions. The structural models are with the strength eccentricities which are much disadvantageous than the stiffness eccentricities during the inelastic response range. A method to determine the ductility reduction factors of the strength eccentric structures is suggested by modifying those of reference symmetric structures through an eccentricity modification factor. The four factors of strength eccentricity ratio, ductility ratio, story number and velocity pulse of ground motions, are investigated to gain insight into this modification factor. It shows that the ductility reduction factors of the eccentric structures are clearly smaller than those of the symmetric structures. The eccentricity modification factor is mainly affected by the strength eccentricity and the ductility ratio, decreasing with the increment of the eccentricity or the decrement of the ductility ratio in a medium eccentricity range. The earthquake pulse-like effect and the eccentricity have coupling influence on the modification factor, while the effect of story number is not apparent. Based on the results of a comprehensive statistical study a simplified expression is suggested, which can estimate the eccentricity modification factors for both pulse-like and nonpulse-like ground motion cases.  相似文献   
87.
A thorough investigation of earthquake-induced collapse of reinforced concrete frames is presented. The inherent correlation between the nonlinear behavior of key components and the collapse mechanism of overall frame is examined through concurrent collapse tests of both frame and key components. Important issues in the component models are investigated through calibration against experiments, leading to a comprehensive structural system model. Both test and simulation indicate that the seismic performance are predominately governed by the key columns, whereas the energy dissipation capacity is somewhat affected by the joints. This study offers systematic experimental data and numerical models for future collapse assessments.  相似文献   
88.
This article describes a novel, small-scale nonlinear beam-column connection and an associated six-story frame test structure for the experimental dynamic response investigation of multi-story buildings subjected to earthquake loading. The objective is to create a re-configurable, reusable experimental platform on which several aspects of nonlinear dynamic response can be investigated through successive, exhaustive testing under suites of earthquake records. Static and dynamic calibration tests demonstrate excellent test-to-test repeatability of four structure configurations. These results confirm that the properties of each configuration (period, strength, energy dissipation) remain invariant, thus allowing future experimental investigations (e.g., of peak engineering demands) under earthquake loading.  相似文献   
89.
Three reinforced concrete (RC) circular column specimens without an effective concrete cover were tested under constant axial compressive as well as cyclic lateral loading. The seismic behavior of the specimens under different loading paths was examined with the objective of understanding the influence of displacement history sequence on the seismic behavior of the columns in near-fault earthquakes. The influence of displacement history sequence upon the hysteretic characteristics, stiffness degradation, lateral capacity, as well as energy dissipation analysis was conducted. The hoop strains of lateral reinforcement at varied column heights under cyclic loading were attained by means of 8–16 strain gauges attached along the hoops. Additionally, the characteristics of strain distribution were investigated in the transverse reinforcement. The results of strain distribution were evaluated with Mander’s confinement stress model and the distribution around the cross section. The length of the plastic hinge at the end of the specimen was evaluated by measurement as well as the inverse analysis. Finally, the deformation of the specimen, which includes the components of shear deformation, bending deformation and bonding-slip deformation, was evaluated and successfully separated.  相似文献   
90.
An experimental investigation was undertaken to study the seismic performance of external reinforced concrete (RC) beam-column joints having representative details for mid-rise RC frame buildings in developing countries such as Iran that were designed and constructed prior to the 1970s. Three half-scale external RC beam-column joints were tested by applying lateral cyclic loading of increasing amplitudes. Tested specimens were comprised of one unit having seismic reinforcement detailing in accordance with the seismic requirements of ACI 318-11, and two units having non-seismic reinforcement detailing in accordance with the 1970s construction practice in many developing countries, such as Iran. Two typical defects were considered for the non-seismic units, being the absence of transverse steel hoops and insufficient bond capacity of beam bottom reinforcing bars in the joint region. Test results indicated that the non-seismically detailed specimens had a high rate of strength and stiffness degradation when compared to the seismically detailed specimen, which was attributed primarily to the joint shear failure or bond failure of the beam bottom bars. The non-seismically detailed specimens also showed a 30% reduction in both average strength and ductility and a 60% loss of energy dissipation capacity in comparison to the seismically detailed specimen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号