首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
  2020年   1篇
  2019年   3篇
  2018年   8篇
  2014年   10篇
  2013年   34篇
  2012年   2篇
  2010年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
41.
In this article, a performance-based seismic design (PBD) methodology is proposed for the design of reinforced concrete buildings, taking into account the influence of infill walls. Two variants of the PBD framework are examined: The first is based on the non-linear static analysis procedure (NSP) while the second relies on the non-linear dynamic analysis procedure (NDP). Both design approaches are compared in the context of structural optimization with reference to the best possible design achieved for each case examined. Life-cycle cost analysis is considered a reliable tool for assessing the performance of structural systems and it is employed in this study for assessing the optimum designs obtained. The optimization part of the problem is performed with an Evolutionary Algorithm while three performance objectives are implemented in all formulations of the design procedures. The two most important findings can be summarized as follows: (i) if structural realization follows the design assumptions, then total expected life-cycle cost of the three type of structures, bare, fully infilled and open ground story, is almost the same and (ii) if an open ground story building is designed as bare or as fully infilled frame, real performance will be much worse than anticipated at the design stage.  相似文献   
42.
Seismic soil pressures developed on a 7 m rigid retaining wall fixed to the bedrock are investigated using a finite element model that engages nonlinear soil intended materials available in OpenSees. This allows incorporation of the inelastic behavior of the soil and wave propagation effects in the soil-wall system seismic response. The nonlinear response of the soil was validated using the well-stablished, frequency-domain, linear-equivalent approach. An incremental dynamic analysis was implemented to comprehensively examine the effect of soil nonlinearity and input motion on the induced seismic pressures and to evaluate current code equations/methodologies at different levels of earthquake intensity. The results show that soil nonlinearity and seismic wave amplification may play an important role in the response of the soil-wall system. Therefore, methodologies that rely only on peak ground acceleration may introduce large bias on the estimated seismic pressures in scenarios where high nonlinearity and site amplification are expected.  相似文献   
43.
A series of component-level experiments have been conducted aiming to evaluate the force and displacement capacities of typical stud-track screw connections (STCs) in steel-framed partition walls. The variables considered in these experiments included screw-edge distances, loading protocols (monotonic or cyclic), and stud and track thicknesses. The experimental data was then utilized to develop different capacity fragility curves for STCs in terms of displacements. A series of analytical STC hinge models were also proposed and validated using this data. The hinge models can be adopted in future studies to develop a comprehensive analytical model for a typical partition wall assembly.  相似文献   
44.
The goal of this article is to select those real (or recorded) ground motions capable of exposing the low- and mid-rise reinforced concrete frame structures to an extreme limit state. By performing correlation analyses, two optimal intensity measures are first selected to represent the ground motion damage potential. Then based on each record's damage potential, four subsets of strong ground motions, referred to as the most unfavorable ground motions, are identified and preliminarily confirmed to be applicable to the low- and mid-rise RC frame structures.  相似文献   
45.
Over the past two decades, many experimental techniques have been developed to improve the efficiency of the externally-bonded fiber-reinforced polymers (FRPs) in order to improve the structural performance of reinforced concrete (RC) beam-column connections. Numerical analysis is also being used as a cost-effective tool to predict the experimental results and to further investigate the parameters that are beyond the scope and capacity of experimental tests. In this study, at first, a fiber-section modeling approach is developed for estimating the seismic behavior of RC beam-column connections before and after application of FRP retrofits. The accuracy of the analysis results were validated against a series of the available experimental data under both monotonic and cyclic loadings. It was pointed out that the proposed model can predict the strength and displacement of un-retrofitted and FRP-retrofitted RC beam-column connections up to the failure points. The verified model was then used to perform a parametric study pertaining to the effect of longitudinal reinforcement ratio on the efficiency of the adopted FRP retrofitting technique to improve the structural behavior of RC beam-column connections.  相似文献   
46.
A range of reinforced concrete frame buildings with different levels of inelasticity as well as periods of vibration is analyzed to study the floor response. The derived floor acceleration response spectra are normalized by peak ground acceleration, peak floor acceleration, and ground response spectrum. The normalization with respect to ground response spectrum leads to the lowest coefficients of variation. Based on this observation as well as previous studies, an amplification function is proposed that can be used to develop design floor spectra from the ground motion spectrum, considering the building’s dynamic characteristics and level of inelasticity.  相似文献   
47.
This paper presents a Kriging model-based method for seismic vulnerability analysis of reinforced concrete (RC) bridges. It aims at reducing the computational effect when the Monte Carlo technique is used for establishing the structural vulnerability curves. The general procedure of the proposed method is put forward firstly. In the procedure, the uncertainties existing in the structures and ground motions are both taken into account, and the uniform design (UD) technique is adopted for generating the random samples. The reliability of the proposed method is demonstrated by the vulnerability analysis of an single degree of freedom (SDOF) system using the Latin hypercube simulation (LHS) method. Vulnerability analysis of an RC bridge system is then carried out using the proposed method. The vulnerability curves of the bridge obtained by the Kriging model-based method are compared with those obtained by the LHS method. Additionally, three simulation schemes adopting different UD tables are employed to investigate the convergence and stability of the proposed method. The results show that the proposed method used for the seismic vulnerability analysis of RC bridges can reduce the computational effort and time to a large extent without much compromise on the accuracy.  相似文献   
48.
The seismic assessment of a road network depends largely on the characterization of the fragility of its bridge components. The accuracy of bridge seismic demand estimates and the use of proper intensity measures (IM) will significantly influence such task. The available literature has mainly focused on buildings or a limited number of bridge configurations and IMs, which may not be representative for bridge portfolio assessment studies. In this paper, the correlation quality between a larger pool of traditional and innovative IMs and the nonlinear dynamic response of typical Italian RC bridges is investigated to identify the best-performing IMs.  相似文献   
49.
Structural irregularity undermines capability of conventional methods for 2D pushover analysis to closely approximate results from inelastic dynamic analysis. In recent years, different methods have been developed to overcome such limitation and their suitability has been checked with reference either to idealized building models or to geometrically simple tested structures. In this paper, suitability of one such method, proposed by Fajfar et al. [2005] Fajfar, P., Maru?i?, D. and Perus, I. 2005. Torsional effects in the pushover-based seismic analysis of buildings. Journal of Earthquake Engineering, 9(6): 831854. [Taylor & Francis Online], [Web of Science ®] [Google Scholar], is evaluated considering an existing school building which presents both vertical and plan irregularities. Types of irregularity encompass not only those usually considered by seismic codes but also those deriving from a bad conceptual design and construction inaccuracies, very frequent at the year of construction (1974). It is found that, even under such complex irregularity conditions, this ‘modified’ pushover analysis correlates well results from inelastic dynamic analysis almost up to failure, since, in most cases, its predictions of interstorey drifts and plastic rotations are conservatively close to values from inelastic dynamic analysis. Even failure mechanism, consisting of a floor mechanism at the third level, is correctly predicted, thus demonstrating adequacy of such method for actual framed structures.  相似文献   
50.
In structural analyses, masonry infill walls are commonly considered to be non structural elements. However, the response of reinforced concrete buildings to earthquake loads can be substantially affected by the influence of infill walls. In this article, an improved numerical model for the simulation of the behavior of masonry infill walls subjected to earthquake loads is proposed and analyzed. First, the proposed model is presented. This is an upgrading of the equivalent bi-diagonal compression strut model, commonly used for the nonlinear behavior of infill masonry panels subjected to cyclic loads. Second, the main results of the calibration analyses obtained with two series of experimental tests are presented and discussed: one on a single frame with one story and one bay tested at the LNEC Laboratory; and the second, on a full-scale four story and three-bay frame tested at the ELSA laboratory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号