首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   3篇
  2019年   6篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   14篇
  2013年   52篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1979年   2篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
51.
This study investigates the effectiveness of the modal analysis using three-degree-of freedom (3DOF) modal equations of motion to deal with the seismic analysis of two-way asymmetric elastic systems with supplemental damping. The 3DOF modal equations of motion possessing the non proportional damping property enable the two modal translations and one modal rotation to be non proportional in an elastic state. The simple approximation method is to use the single degree-of-freedom (SDOF) modal equations of motion, which are obtained by neglecting the off-diagonal elements of the transformed damping matrix. One, one-story and one, three-story non proportionally damped two-way asymmetric buildings under the excitation of bi-directional seismic ground motions are analyzed. The analytical results are obtained by using the proposed method, noted simple approximation method, and direct integration of the equation of motion. It is seen that the proposed method can significantly improve the accuracy of the analytical results compared with those obtained by using the simple approximation method. Moreover, the proposed method does not substantially increase the computational efforts.  相似文献   
52.
In two-dimensional and single axis three-dimensional finite element analyses, the ground motion incidence angle can play a significant role in structural response. The effect of incidence angle for three-dimensional excitation and response is investigated in this paper for response of highway bridges. Single-degree-of-freedom elastic and inelastic mean spectra were computed from various orientation techniques and found indistinguishable for combinations of orthogonal horizontal components. Probabilistic seismic demand models were generated for the nonlinear response of five different bridge models. The negligible effect of incidence angle on mean ensemble response was confirmed with a stochastic representation of the ground motions.  相似文献   
53.
A new version of the Full Operator Method (FOM) is proposed in this work. The numerical characteristics of the modified FOM (mFOM) are investigated, both theoretically and analytically. It is found that mFOM is unconditionally stable when the estimated stiffness of the structure is larger than or equal to the actual stiffness. Simulations using two numerical examples are carried out to demonstrate the capability of the mFOM. The seismic response simulation of a composite coupled wall system suggests that the mFOM is capable of generating reasonably accurate solutions despite the presence of structural complexity, material nonlinearity, and displacement control errors.  相似文献   
54.
To evaluate the strength hierarchy, three different types of exterior beam-column joint, i.e., gravity load designed, non ductile and ductile, following two different codes are considered. Strength of different components of beam-column joint, i.e., column, beam, and joint core, is individually calculated from different failure criteria. Shear strength of the joint is evaluated from softened strut and tie model. Strength hierarchy, ultimate strength, and critical failure modes of the specimens are analytically estimated and found to be well corroborated with the experimental results. The study will help in designing the earthquake resistant RC structures in a more rational way.  相似文献   
55.
This article describes an experimental study carried out on of reinforced concrete (RC) walls of less confining reinforcement than that recommended by ACI 318. A total of eight RC walls with boundary elements comprising of five walls with aspect ratio of 1.125 and three walls with aspect ratio of 1.625 were tested by subjecting them to low levels of axial compression loading and simulated seismic loading, to examine the structural performance of the walls with limited transverse reinforcement. Conclusions are reached concerning the failure mode, drift capacity, strength capacity, components of top deformation, and energy dissipation characteristics of walls on the seismic behavior with limited transverse reinforcement. The influences of axial loading, transverse reinforcement in the wall boundary elements, and the presence of construction joints at the wall base on the seismic behavior of walls are also studied in this paper. Lastly, reasonable strut-and-tie models are developed to help in understanding the force transfer mechanism in the walls tested.  相似文献   
56.
Traditional or historic masonry structures occur in large populations throughout the world, particularly in preserved historical city clusters. Being non-engineered and aging these structures are in urgent need of assessment and seismic repair/rehabilitation. However, traditional masonry presents important challenges to computational modeling, owing to complexity of structural system, material inhomogeneity, and contact interactions that collectively can only be addressed through detailed 3D nonlinear representation. In this article, a simple performance assessment model is developed in order to address the need for preliminary assessment tools for this class of structures. The objective is to be able to rapidly identify buildings that are at higher risk in the event of a significant earthquake, potentially justifying a second round of more detailed evaluation. The proposed model defines the characteristics of a Single Degree of Freedom representation of the building, formulating consistent 3D shape functions to approximate its fundamental mode of vibration considering both in-plane and out-plane wall bending as a result of insufficient diaphragm action. Parametric expressions for the dynamic properties are derived in terms of the important geometric, material, and system characteristics, and are used to express local demand from global estimates. Acceptance criteria are established both in terms of deformation and strength indices to guide retrofit. An application example of the proposed assessment methodology is included to demonstrate the ability of the model to reproduce the essential features of traditional masonry buildings under seismic action.  相似文献   
57.
A nested lumped-parameter model (LPM) consisting of frequency-independent springs and dashpots is proposed to represent the foundation-soil dynamic system with strongly frequency-dependent impedance in time domain. Due to the convergence and robustness of the complex Chebyshev polynomial, it is used to approximate the dynamic flexibility of the foundation by least-square curve-fitting technique. The comparisons with existing LPMs show that the present model can express the impedance by using a small number of elements and reduce oscillation of the solution appearing in simple polynomial approximations. Finally, several examples of foundations with irregular geometries are presented to show the application of nested LPMs.  相似文献   
58.
In our research, we apply numerical modeling for prediction of liquefaction of sands during and after dynamic loading. In numerical modeling, to properly simulate the generation, redistribution, and dissipation of excess pore water pressure during and after dynamic loading, it is important to use a suitable constitutive model for soil. In this article, Dafalias and Manzari’s model [2004] (a critical state bounding surface plasticity model) was used to model the behavior of saturated sand due to relatively simple of formulations and a unique set of input parameters for a wide range of initial stress and void ratio. The attention in this article is on Babolsar sand. After calibration model parameters for Babolsar sand, the analysis of liquefaction using the modeling of a centrifuge test and predictions of model was carried out. The results indicate a reasonable performance of the model for prediction of behavior of types of sands. Also, Babolsar sand has more prone to dilatancy than Nevada and Toyoura sands.  相似文献   
59.
Relative displacement floor spectra represent a powerful tool to evaluate the seismic displacement requirements of non-structural elements relative to their attachment points and can be used for displacement-based design of ductile components.

This article examines the displacement floor spectra on single-degree of freedom systems subject to accelerograms of varying intensity. A new method is proposed to predict floor spectra on single degree of freedom supporting structures. The results of nonlinear time-history analyses of a series of case-study structures indicate that the new methodology provides good results.

Future research will aim to validate this approach for multi-degrees of freedom supporting structures.  相似文献   

60.
This article proposes a numerical investigation of the frictional heating developed in sliding bearings under high velocities and the influence of the relevant temperature rise on the mechanical characteristics of the device. A three-dimensional finite element model of the bearing is created and frictional heat generation is modelled through a thermal source inserted at the sliding surface of the bearing, with intensity dependent on the coefficient of friction, the contact pressure and the velocity. The friction value is adjusted step-by-step on surface temperature and velocity and used to update the thermal flux and the resisting force developed by the bearing. The numerical predictions of temperature histories and force–displacement loops are compared with the results of laboratory tests to validate the numerical approach. The procedure can help in preliminary studies for the selection of bearing materials accounting for their thermal stability and for the estimation of change of design properties of sliding isolation bearings due to frictional heating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号