首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   16篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   17篇
  2018年   26篇
  2017年   12篇
  2016年   3篇
  2015年   4篇
  2014年   25篇
  2013年   118篇
  2012年   11篇
  2011年   5篇
  2010年   4篇
  2009年   9篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2002年   3篇
  2001年   4篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1983年   1篇
  1981年   1篇
  1980年   4篇
  1979年   3篇
排序方式: 共有297条查询结果,搜索用时 15 毫秒
41.
Recent damage examples of aged steel bridge infrastructures around the world are so alarming. They intensified the importance of careful evaluation of existing structures for the feasibility of current usage and to ensure public safety. Corrosion and fatigue cracking may be the two most important types of damages in aging structures. Furthermore, recent earthquakes demonstrated potential seismic vulnerability of some types of steel bridges. Corrosion and its effects can trigger the damages caused by earthquakes, and it will be vital to understand the behavior of existing steel bridges which are corroding for decades in future severe seismic events as well. This article comprises the results of nonlinear FEM analysis of many actual corroded plates with different corrosion conditions and proposes a simple and reliable methodology to estimate remaining seismic strength and energy dissipation capacities by measuring only the minimum thickness of a corroded surface, which can be used to make rational decisions about the maintenance management plan of steel infrastructures.  相似文献   
42.
Two analytical models for unreinforced masonry (URM) buildings are proposed with the aim to simulate their seismic response and to estimate corresponding vulnerability functions. The proposed models are implemented in SAP 2000 nonlinear software to obtain capacity curve parameters for representative Indian URM buildings, based on a field survey and statistical analysis. Vulnerability functions are estimated using the obtained capacity curves. Damage Probability Matrices (DPMs) are obtained using the approximate PGA-intensity correlation relationship as per Indian seismic building code and are compared with the commonly used intensity scales and empirical damage data observed after the 2001 Bhuj earthquake.  相似文献   
43.
Symmetrically reinforced bridge columns with a horizontal cantilever in one direction, called C-bent columns, tend to deform predominantly in the direction of applied moment when subject to strong earthquake shaking. For this reason, the strength in the direction of applied moment is generally increased in design. This article describes the use of inelastic dynamic time history analyses with a suite of ground motion records to quantify the amount of strength increase required to minimize likely peak and permanent displacement demands. It is shown that the strength should be increased by approximately 2.3 times the applied moment in design.  相似文献   
44.
45.
Elastomeric pad bearings are widely applied in short- to medium-span girder bridges in China, with the superstructure restrained by reinforced concrete (RC) shear keys in the transverse direction. Field investigations after the 2008 Wenchuan earthquake reveal that bearing systems had suffered the most serious damage, such as span falling, bearing displaced, and shear key failure, while the piers and foundations underwent minor damage. As part of a major study on damage mechanism and displacement control method for short- to medium-span bridges suffered in Wenchuan earthquake, a 1:4 scale, two-span bridge model supported on elastomeric pad bearings were recently tested on shake tables at Tongji University, Shanghai. The bridge model was subjected to increasing levels of four seismic excitations possessing different spectral characteristics. Two restraint systems with and without the restraint of RC shear keys were tested. A comprehensive analytical modeling of the test systems was also performed using OpenSees. The experimental results confirmed that for the typical bridges on elastomeric pad bearings without RC shear keys, the sliding effect of the elastomeric pad bearings plays an important role in isolation of ground motions and, however, lead to lager bearing displacement that consequently increases the seismic risk of fall of span, especially under earthquakes that contain significant mid-period contents or velocity pulse components. It is suggested from the test results that RC shear keys should be elaborately designed in order to achieve a balance between isolation efficiency and bearing displacement. Good correlation between the analytical and the experimental data indicates that the analytical models for the bearing and RC shear key as well as other modeling assumptions were appropriate.  相似文献   
46.
This article makes an attempt to investigate the low-frequency characterizations of pulse-type ground motions through ground motion components instead of original records. A decomposed method based on multi-resolution analysis is introduced in this article. The accuracy and validity of the method is tested in frequency domain, time domain and dynamic response. A dataset of 398 low-frequency components is obtained after the decomposition of 91 typical pulse-type records. A probabilistic model to describe the proportion of low-frequency components in corresponding original ground motions is established. At last, the decomposed method is used to investigate the impulsive characterizations of pulse-type ground motions.  相似文献   
47.
This study proposes a method for selecting ground motions from a ground motion library with response spectra that match the target response spectrum mean, variance, and correlation structures. The proposed method is conceptually simple and straightforward. In this method, a desired number of ground motions are sequentially selected from first to last. The accuracy and consistency of the proposed method are verified through comparisons of the ground motions selected using the proposed method with those selected using conventional methods. This study shows that the seismic responses of the frames vary according to ground motion selection and correlation structures.  相似文献   
48.
During the past decades, various analytical macroscopic models of structural walls have been developed for simulating the seismic behavior of reinforced concrete (RC) walls. Due to the inherently complicated characteristics of RC walls, macroscopic models that can capture all the important response characteristics with good accuracy and applicability are very challenging to establish. A thorough review of the four main types of mathematical macro models of RC walls, i.e., the vertical-line-element-model, the 2-D shear panel element model, the equivalent truss model and the fiber-based model, is presented to discuss the methodology behind each model and examine the corresponding merits and disadvantages. Suggestions are also made for the further research of the macro modeling of structural walls.  相似文献   
49.
The seismic assessment of special bridges, even under the hypothesis of full knowledge of site conditions, structural characteristics, and seismic activity at their location, is not an easy and straightforward task due to the complexities and uncertainties related to the finite-element modeling approaches, structural loading scenarios, and seismic analysis methodologies. In this article, a series of nonlinear static and dynamic finite-element analyses on the Mogollon Rim Viaduct are performed with consideration of both uniform and conditionally simulated non-uniform seismic motions. The failure modes of the bridge using different numerical modeling approaches are discussed, and the degree of sensitivity of its response to the different seismic assessment strategies is evaluated. The effect of the multi-component, multi-support and multi-directional excitations of ground motions on the design and response are studied, and the pros and cons of the commonly used structural analysis methodologies of bridges are also addressed. The numerical results of the present study provide a deeper insight into the nonlinear behavior of curved reinforced-concrete bridges, and suggest practice-oriented approaches for their seismic assessment.  相似文献   
50.
This work was aimed at developing a practical and simple settlement estimation of shallow foundation on liquefiable deposits. The study conducted a centrifuge test, a series of comprehensive numerical analysis, back analysis, equation calibration, and verification with data from not only centrifuge test but also the literature. It finally proposed a quick calculation method based on Meyerhof’s settlement equation (1965). A two-dimensional numerical analysis, named ALID, (Analysis for Liquefaction-induced Deformation), was employed for obtaining settlement of shallow foundations on liquefiable soils with different relative densities under various seismic conditions. Its performance was first verified through a centrifuge test conducted in this study. Then, the developed method based on Meyerhof’s settlement equation was employed, and a new parameter, NLR, was proposed to present the strength of liquefied soils by replacing N value in the original equation. The NLR was obtained through back analysis of the numerical results and modified accordingly after comparison with the data from the literature. This paper, finally, demonstrated the practical use of the proposed method involving NLR by predicting 199 sets of liquefaction-induced settlement of shallow foundation reported in the past, including a latest most liquefaction-induced settlement of a house in 0206 earthquake on February 6, 2016, in Taiwan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号