首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   0篇
  2020年   1篇
  2019年   9篇
  2018年   14篇
  2016年   1篇
  2014年   13篇
  2013年   52篇
  2009年   1篇
  2005年   1篇
  2001年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
71.
A dissipative connector device, consisting of a steel plate folded at right angle along three lines to get a W-shaped profile, is proposed for the safe fastening of the horizontal cladding panels of new or existing precast structures under seismic action. Experimental tests are carried out to characterize the hysteretic behavior of the connector device. Different technological features, restraint conditions, and loading protocols are considered. Nonlinear hysteretic models are validated against the results of pseudo-dynamic tests on a full-scale prototype of precast building with cladding panels. Guidelines for the design of the dissipative connector device are provided.  相似文献   
72.
Based on the 3-single-degree-of-freedom (SDOF) model of twin-tower structures linked by the sky-bridge and passive control devices, the frequency functions and the vibration energy expressions of the structures are derived by using the stationary white noise as the seismic excitation. The analytical formulas for determining the connecting optimum parameters of viscoelastic damper (VED) represented by the Kelvin model and the viscous fluid damper (VFD) represented by Maxwell model are proposed using the principle of minimizing the average vibration energy of either the single tower or the twin tower. Three pairs of representative numerical examples of twin-tower-connected structures are used to verify the correctness of the theoretical approach. The optimum parametric analysis demonstrates that the control performance is not sensitive to damper damping ratio of VED and relaxation time of VFD. The effectiveness of the proposed control strategies based on the 3-SDOF models is also proved to be applicable to multi-degree-of-freedom systems. The theoretical analysis and numerical results indicate that the seismic response and vibration energy of the twin-tower-connected structures are mitigated greatly under the two types of dampers. The presented control strategies of VED and VFD can help engineers in application of coupled structures.  相似文献   
73.
The aim of this paper is to investigate the dynamic response of planar circular arches with variable cross-section subjected to seismic ground motions. Arches have a wide range of application (e.g. bridges, roofs) thanks to their capacity to span large areas by resolving vertical actions into compressive stresses and confining tensile stresses. The full understanding of their dynamic response is a challenging technical and computational problem, especially when seismic loading is considered. For example, the assumption of axial inextensibility simplifies the differential equations but overestimates the vibration frequencies, especially those of shallow arches since axial forces are of paramount importance (as opposed to beams). In lieu of the above, our formulation incorporates the effect of axial extension, and the arches are modeled using a new generic curved beam model that includes both axial (tangential) and transverse (normal) to the arch centerline deformations, and is able to account for variable mass and stiffness properties, as well as elastic support or restraint. The resulting dynamic governing equations of the circular arch are formulated in terms of the displacements, and solved using an efficient integral equation method. Three circular arches with variable rectangular cross-section are analyzed in order to investigate their dynamic properties and seismic performance. Using both time history and modal analysis useful conclusions are drawn with regard to the contribution of each mode on the calculation of different response quantities.  相似文献   
74.
The effective stiffness of a structural wall is an important property in design, which many design codes estimate by the moment inertia of the wall section with a reduction factor. The reduction factor is typically estimated by empirical equations based on configurations of the wall. The existing methods for the reduction factor were proposed based on investigations on rectangular reinforced concrete (RC) walls. The effective stiffness of non-rectangular RC walls can be more complex than that of rectangular RC walls. As such, more research investigations are required. Based on finite element models, the effective stiffness of U-shaped and T-shaped RC walls was investigated in this paper. The numerical results were further adopted to develop methods for calculating the effective stiffness of non-rectangular wall in different loading directions. The proposed method was afterward compared with the experimental data.  相似文献   
75.
In recent years, the use of carbon fiber sheet (CFS) to provide lateral confinement for enhanced ductility and strength of reinforced concrete bridge columns has been increasing. While the monotonic behavior of CFS-confined concrete has been studied extensively, its cyclic response has not been fully understood. Most of the available studies are experimental investigations, hence there is a need to develop an analytical model to simulate the experimental results. Analysis of the hysteretic behavior of CFS-retrofitted circular columns is presented in this article using the fiber element that is based on cyclic constitutive models of longitudinal reinforcement and concrete confined by both CFS and tie reinforcement. The analysis was verified based on available cyclic test data and the analysis provides good agreement with the experimental results. Results show that flexural strength and ductility of columns wrapped with CFS increases as CFS ratio increases. However, as tie reinforcement ratio increases, there is no much difference on the hysteretic response for low tie reinforcement ratios. Using the fiber element analysis, the effect of CFS retrofit on the seismic response of a 7.5 m tall prototype pier built in the 1970s to 1980s is also clarified.  相似文献   
76.
Probabilistic models have been developed in a previous study by the authors to estimate the seismic deformation demands on structural components of reinforced concrete (RC) bridges with two-column bents. However, such models should be updated to reflect the latest laboratory of field data. Using a Bayesian approach, this article updates a currently available probabilistic model for the deformation demands of columns in bridges with two-column RC bents. The updated model incorporates information from newly available experimental data from shake table tests conducted based on a record of the 1994 Northridge Earthquake for a structural system with three bents with two columns per bent. The updated model is more accurate than the previous one in predicting the deformation demand of bridges with two-column RC bents and reduces the statistical uncertainty due to the addition of new data. As an application, fragility estimates for an example bridge are computed using the updated model both at the component (column) and system (bridge) levels.  相似文献   
77.
Review of older non seismically detailed reinforced concrete building collapses shows that most collapses are triggered by failures in columns, beam-column joints, and slab-column connections. Using data from laboratory studies, failure models have previously been developed to estimate loading conditions that correspond to failure of column components. These failure models have been incorporated in nonlinear dynamic analysis software, enabling complete dynamic simulations of building response including component failure and the progression of collapse. A reinforced concrete frame analytical model incorporating column shear and axial failure elements was subjected to a suite of near-fault ground motions recorded during the 1994 Northridge earthquake. The results of this study show sensitivity of the frame response to ground motions recorded from the same earthquake, at sites of close proximity, and with similar soil conditions. This suggests that the variability of ground motion from site to site (so-called intra-event variability) plays an important role in determining which buildings will collapse in a given earthquake.  相似文献   
78.
Structural irregularity undermines capability of conventional methods for 2D pushover analysis to closely approximate results from inelastic dynamic analysis. In recent years, different methods have been developed to overcome such limitation and their suitability has been checked with reference either to idealized building models or to geometrically simple tested structures. In this paper, suitability of one such method, proposed by Fajfar et al. [2005] Fajfar, P., Maru?i?, D. and Perus, I. 2005. Torsional effects in the pushover-based seismic analysis of buildings. Journal of Earthquake Engineering, 9(6): 831854. [Taylor & Francis Online], [Web of Science ®] [Google Scholar], is evaluated considering an existing school building which presents both vertical and plan irregularities. Types of irregularity encompass not only those usually considered by seismic codes but also those deriving from a bad conceptual design and construction inaccuracies, very frequent at the year of construction (1974). It is found that, even under such complex irregularity conditions, this ‘modified’ pushover analysis correlates well results from inelastic dynamic analysis almost up to failure, since, in most cases, its predictions of interstorey drifts and plastic rotations are conservatively close to values from inelastic dynamic analysis. Even failure mechanism, consisting of a floor mechanism at the third level, is correctly predicted, thus demonstrating adequacy of such method for actual framed structures.  相似文献   
79.
This article presents experimental and analytical investigations of hybrid-steel concrete connections. In the experimental study, four full-scale specimens including one cast-in-place and three precast specimens were tested under cyclic load reversals. The performance of the specimens in terms of energy dissipating capacity, cracking patterns, and variation of strains along the main reinforcement is described. However, due to the inherent complexity of beam-column joints and the unique features of the tested specimens, the experimental investigation was not sufficient enough to fully understand the influence of several parameters. Therefore, an analytical investigation based on the FE models using DIANA software is presented. Validation of the FE models against the experimental results has shown a good agreement. The critical parameters influencing the joint's behavior such as the continuation of beam bottom reinforcement, column axial load, the size and embedded length of the angle sections are varied, and their effects including possible implications on code specifications are discussed.  相似文献   
80.
Eurocode 8 Part 3 (EC8-3) is devoted to assessment and retrofitting of existing buildings. In order to take into account the uncertainty in the knowledge of structural properties, EC8-3 defines, analogously to the ordinary material partial factors, an adjustment factor, called “confidence factor (CF),” whose value depends on the level of knowledge (KL) of properties such as geometry, reinforcement layout and detailing, and materials. This solution is plausible from a logical point of view but it cannot yet profit from the experience of its use in practice, hence it needs to be substantiated by a higher level probabilistic analysis accounting for and propagating epistemic uncertainty (i.e., incomplete knowledge of a structure) throughout the seismic assessment procedure. This article investigates the soundness of the format proposed in EC8-3. The approach taken rests on the simulation of the entire assessment procedure and the evaluation of the distribution of the assessment results (distance from the limit state of interest) conditional on the acquired knowledge. Based on this distribution, a criterion is employed to calibrate the CF values. The obtained values are then critically examined and compared with code-specified ones. The results pinpoint a number of deficiencies that appear to somewhat invalidate the approach. The methodological significance of the work extends beyond the assessment procedure in EC8-3, since similar factors appear in other international guidelines (e.g., the knowledge factor of FEMA356).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号