首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   13篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   12篇
  2015年   7篇
  2014年   8篇
  2013年   52篇
  2012年   12篇
  2011年   4篇
  2010年   5篇
  2009年   7篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1993年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
71.
The concept of source water protection (SWP) has gained prominence in the water resource literature. SWP consists of watershed and groundwater management for the protection of drinking water supplies. The logic behind SWP is that it is easier, cheaper and safer to protect a drinking water source from contamination than it is to remediate after contamination. SWP is largely a regulatory activity, requiring provincial government policy commitments. This research investigates the degree to which recent provincial deregulation plays a role in constraining SWP implementation at the local water utility level. The research was undertaken in British Columbia (BC) where, after 2001, the provincial government advanced widespread 'New Era' deregulation of social and environmental legislation. The apparent contradiction between government deregulation and government commitment to safe drinking water is interrogated. Data were collected using semi-structured interviews and document review in the Okanagan Basin. This article reveals that New Era deregulation initiatives have constrained local efforts to implement SWP on the ground. This article recommends that a single provincial agency should oversee drinking water in BC and that greater attention be given to regional governance for drinking water management in the Okanagan Basin.  相似文献   
72.
《四川文物》2021,(2):4-14
2019年,丝绸之路南亚廊道调查队在青海省民和县寺沟峡内发现了4幅6组个体102个岩画,并对岩画进行了详细的调查、测绘和数字化扫描。从整个岩面的制作技法来看,有直接磨刻法和敲凿法。岩画主要以抽象图案为主,有少量人像、持物人物、鸟等具象形象。其形象与新石器晚期至青铜时代彩陶图案纹饰相似度较高,与中原地区岩画有着密切关系,为研究官亭盆地早期文化提供了新的突破口。  相似文献   
73.
The archaeological record of the Terminal Pleistocene and Early Holocene in the Great Basin consists largely of surface lithic artifacts, and consequently research has concentrated on typological and technological studies. The small suite of radiocarbon dates available suggests human presence in the Great Basin by at least 11,500 B.P., but evidence of subsistence is scanty. Technological analyses as well as artifact distributions suggest that the earliest occupants of this region subsisted primarily by hunting, possibly large terrestrial game. As elsewhere in North America, the earliest occupants of the Great Basin faced a rapidly changing environment, with the drying of shallow pluvial lake remnants and the creation of new habitats. Paralleling these changes, significant subsistence resource diversification coupled with expansion into new environments is evident by the close of the Pleistocene.  相似文献   
74.
X. W. Guo  K. Y. Liu  S. He  Z. Yang  T. T. Dong 《Geofluids》2016,16(1):129-148
Hydrocarbon generation can yield high fluid pressures in sedimentary basins as the conversion of solid kerogen to hydrocarbons can result in an increase in fluid volume. To quantify the relationship between gas generation and overpressure in source rocks, a set of equations for computing the pressure change due to gas generation has been derived. Those equations can be used to quantitatively estimate overpressure generated by type III kerogen in source rocks by considering gas generation and leakage, gas dissolution in formation water and residual oil, thermal cracking of oil to gas, and hydrocarbon episodic expulsion from source rocks. The equations also take consideration of other factors including source rock porosity, transformation ratio, total organic carbon (TOC), hydrogen index, and compressibility of kerogen, oil, and water. As both oil and gas are taken into account in the equations, they can also be used to estimate the evolution of overpressure caused by hydrocarbon generation of type I and type II kerogen source rocks. Sensitivity analyses on the type III kerogen source rock indicate that hydrogen index is the most influential parameter for overpressure generation, while TOC and residual gas coefficient (β: ratio of residual gas over the total gas generated) have a moderate effect. Overpressure can be generated even if the gas leakage/loss in the source rock is up to 80% of the total gas generated. This suggests that the internal pressure seal of the source rock is not a critical factor on the pressure change as long as the source rocks are capable of sealing liquid oil. The equations were applied to evaluate the overpressure in the Eocene–Oligocene Enping Formation source rocks due to hydrocarbon generation in the Baiyun Depression, the Pearl River Mouth Basin by considering the source rock properties, hydrocarbon generation history, and hydrocarbon expulsion timing. Two episodes of overpressure development due to gas generation and release were modeled to have occurred in the Enping Formation source rock since 16 Ma. The overpressure release at 10.2–5.3 Ma via hydrocarbon expulsion was apparently related to the Dongsha phase of tectonic deformation, whereas the pressure release at 2–0 Ma was due to pressure generation that was exceeded the fracture‐sealing pressure in the source rocks.  相似文献   
75.
A combined clay mineralogical, fluid inclusion, and K‐Ar study of Upper Jurassic metasediments at the Gehn (Lower Saxony Basin, Germany) provides evidence for a transient hydrothermal event during Upper Cretaceous basin inversion centered on a prominent gravimetric anomaly. Kaolinite and smectite in Oxfordian pelitic parent rocks that cap a deltaic sandstone unit were locally transformed into pyrophyllite, 2M1 illite, R3 illite–smectite, chlorite, and berthierine at the Ueffeln quarry. The pyrophyllite‐bearing metapelites lack bedding‐parallel preferred orientation of sheet silicates and experienced peak temperatures of about 260–270°C consistent with microthermometric data on quartz veins in the underlying silicified sandstones. The presence of expandable layers in illite–smectite and high Kübler Index values indicate that the thermal event was rather short‐lived. K‐Ar dating of the <0.2 μm fraction of the pyrophyllite‐bearing Ueffeln metapelite yields a maximum illitization age of 117 ± 2 Ma. Lower trapping temperatures of aqueous fluid inclusions in quartz veins and the absence of pyrophyllite in metapelites of the Frettberg quarry in a distance of about 2.5 km from the Ueffeln quarry infer maximum paleotemperatures of only 220°C. The highly localized thermal anomaly at Ueffeln suggests fault‐controlled fluid migration and heat transfer that provided a thermal aureole for pyrophyllite formation in the metapelites rather than metamorphism due to deep burial. A pH neutral hydrothermal fluid that formed by devolatilization reactions or less likely by mixing of meteoric and marine waters that interacted at depth with shales is indicated by the low salinity (3–5 wt. % NaCl equiv.) of aqueous inclusions, their coexistence with methane–carbon dioxide‐dominated gas inclusions as well as carbon, hydrogen, and oxygen isotope data. The upwelling zone of hydrothermal fluids and the thermal maximum is centered on a gravimetric anomaly interpreted as an igneous intrusion (‘Bramsche Massif’) providing the heat source for the intrabasinal hydrothermal system.  相似文献   
76.
X. R. Ming  L. Liu  M. Yu  H. G. Bai  L. Yu  X. L. Peng  T. H. Yang 《Geofluids》2016,16(5):1017-1042
This study investigates the Wangfu Depression of the Songliao Basin, China, as a natural analogue site for Fe migration (bleaching) and mineralization (formation of iron concretions) caused by reducing CO2‐bearing fluids that leak along fractures after carbon capture, utilization, and storage. We also examined the origin of fracture‐filling calcite veins, the properties of self‐sealing fluids, the influence of fluids on the compositions of mudstone and established a bleaching model for the study area. Our results show that iron concretions are the oxidative products of precursor minerals (pyrite and siderite) during uplift and are linked to H2S and CO2 present in early stage fluids. The precipitation of calcite veins is the result of CO2 degassing and is related to CO2, CH4, and minor heavy hydrocarbons in the main bleaching fluids. In our model, fluids preferentially enter high‐permeability fracture systems and result in the bleaching of surrounding rocks and precipitation of calcite veins. The infilling of calcite veins significantly decreases the permeability of fractures and forces the fluids to slowly enter and bleach the mudstone rocks. The Fe2+ released during bleaching migrates to elsewhere with the solutions or is reprecipitated in the calcite veins and iron concretions. The formation of calcite veins reduces the fracture space and effectively prevents fluid flow. The fluids have an insignificant effect on minerals within the mudstone. In terms of the chemistry of the mudstone, only the contents of Fe2O3, U, and Mo change significantly, with the content of U increasing in the mudstone and the contents of Fe2O3 and Mo decreasing during bleaching.  相似文献   
77.
J. Tóth  I. Almási 《Geofluids》2001,1(1):11-36
The ≈ 40 000 km2 Hungarian Great Plain portion of the Pannonian Basin consists of a basin fill of 100 m to more than 7000 m thick semi‐ to unconsolidated marine, deltaic, lacustrine and fluviatile clastic sediments of Neogene age, resting on a strongly tectonized Pre‐Neogene basement of horst‐and‐graben topography of a relief in excess of 5000 m. The basement is built of a great variety of brittle rocks, including flysch, carbonates and metamorphics. The relatively continuous Endr?d Aquitard, with a permeability of less than 1 md (10?15 m2) and a depth varying between 500 and 5000 m, divides the basin's rock framework into upper and lower sequences of highly permeable rock units, whose permeabilities range from a few tens to several thousands of millidarcy. Subsurface fluid potential and flow fields were inferred from 16 192 water level and pore pressure measurements using three methods of representation: pressure–elevation profiles; hydraulic head maps; and hydraulic cross‐sections. Pressure–elevation profiles were constructed for eight areas. Typically, they start from the surface with a straight‐line segment of a hydrostatic gradient (γst = 9.8067 MPa km?1) and extend to depths of 1400–2500 m. At high surface elevations, the gradient is slightly smaller than hydrostatic, while at low elevations it is slightly greater. At greater depths, both the pressures and their vertical gradients are uniformly superhydrostatic. The transition to the overpressured depths may be gradual, with a gradient of γdyn = 10–15 MPa km?1 over a vertical distance of 400–1000 m, or abrupt, with a pressure jump of up to 10 MPa km?1 over less than 100 m and a gradient of γdyn > 20 MPa km?1. According to the hydraulic head maps for 13 100–500 m thick horizontal slices of the rock framework, the fluid potential in the near‐surface domains declines with depth beneath positive topographic features, but it increases beneath depressions. The approximate boundary between these hydraulically contrasting regions is the 100 m elevation contour line in the Duna–Tisza interfluve, and the 100–110 m contours in the Nyírség uplands. Below depths of ≈ 600 m, islets of superhydrostatic heads develop which grow in number, areal extent and height as the depth increases; hydraulic heads may exceed 3000 m locally. A hydraulic head ‘escarpment’ appears gradually in the elevation range of ? 1000 to ? 2800 m along an arcuate line which tracks a major regional fault zone striking NE–SW: heads drop stepwise by several hundred metres, at places 2000 m, from its north and west sides to the south and east. The escarpment forms a ‘fluid potential bank’ between a ‘fluid potential highland’ (500–2500 m) to the north and west, and a ‘fluid potential basin’ (100–500 m) to the south and east. A ‘potential island’ rises 1000 m high above this basin further south. According to four vertical hydraulic sections, groundwater flow is controlled by the topography in the upper 200–1700 m of the basin; the driving force is orientated downwards beneath the highlands and upwards beneath the lowlands. However, it is directed uniformly upwards at greater depths. The transition between the two regimes may be gradual or abrupt, as indicated by wide or dense spacing of the hydraulic head contours, respectively. Pressure ‘plumes’ or ‘ridges’ may protrude to shallow depths along faults originating in the basement. The basement horsts appear to be overpressured relative to the intervening grabens. The principal thesis of this paper is that the two main driving forces of fluid flow in the basin are gravitation, due to elevation differences of the topographic relief, and tectonic compression. The flow field is unconfined in the gravitational regime, whereas it is confined in the compressional regime. The nature and geometry of the fluid potential field between the two regimes are controlled by the sedimentary and structural features of the rock units in that domain, characterized by highly permeable and localized sedimentary windows, conductive faults and fracture zones. The transition between the two potential fields can be gradual or abrupt in the vertical, and island‐like or ridge‐like in plan view. The depth of the boundary zone can vary between 400 and 2000 m. Recharge to the gravitational regime is inferred to occur from infiltrating precipitation water, whereas that to the confined regime is from pore volume reduction due to the basement's tectonic compression.  相似文献   
78.
A pattern recognition approach to spatial analysis is applied to artifact distributions from the Magdalenian site of Pincevent, Section 36. Patterning is investigated using a κ-means cluster analysis that permits iterative mapping of artifact distributions at several scales of spatial complexity. Multiple scales of patterning are recognized in the Pincevent distributions. These patterns are assessed in terms of those discovered by the excavators through intensive visual inspection of the materials. Basic concordance is seen between these two approaches. Finally, the analysis detects more detailed patterning. A relationship between artifact abundance and location seems to hold constant throughout the site.  相似文献   
79.
J. Chen  D. Liu  P. Peng  C. Yu  B. Zhang  Z. Xiao 《Geofluids》2013,13(3):381-394
The most important petroleum exploration target in the Tarim Basin, northwest China, is the paleokarst reservoir. To understand the source and evolution of brine in this type of reservoir, a total of 37 formation‐water samples were collected from the Middle‐Lower Ordovician paleokarst reservoir in the Lunnan oilfield. The δD‐δ18O correlation and Cl/Br ratios reflect the mixture of two fluids: meteoric water and evaporated seawater. The different degree of mixture divided samples into two groups. Group 1 samples, from deep strata (5150–6667 m.b.s.l.) in the east of the field, with elevated δD (?53.5 to ?38.0‰), δ18O values (0.66–5.99‰), and lower Cl/Br ratios (336–478 for Cl/Br, except LN634‐1 and LN631‐1) were formed by evaporation of seawater plus a small contribution from meteoric water. Group 2 samples, from shallow strata (5038–6067 m.b.s.l.), in the west of the field, have contrasting features (?59.6 to ?48.5‰ for δD, ?0.47 to 2.17‰ for δ18O, and 501 to 871 for Cl/Br), which reflect a mixture of evaporated seawater with a high proportion of meteoric water. Both of the fluid types exchanged oxygen isotope with minerals. The investigation into cation composition reveals that, before entering into the current reservoir, waters suffered albitization of plagioclase; moreover, meteoric water dissolved evaporites and seawater experienced dolomitization. A mixing trend showed by strontium isotopes (0.709801–0.711628) gave further evidence for the mixture of two fluid types. Based on the correlation of geological history with our data, two infiltration models of meteoric waters can be constructed. According to the chemical and isotopic compositions of the waters, an east fluid regime (Group 1) and a west fluid regime (Group 2) have thus been defined. Better understanding of the subsurface fluid movement patterns may be helpful for the local exploration.  相似文献   
80.
Yates, A.M., December, 2008. Two new cowries (Gastropoda: Cypraeidae) from the middle Miocene of South Australia. Alcheringa 32, 353–364. ISSN 0311-5518.

The South Australian specimens of the cypraeids Umbilia leptorhyncha (McCoy, 1877) and Lyncina (Austrocypraea) contusa (McCoy, 1877) are re-examined. Umbilia caepa sp. nov. differs from U. leptorhyncha in its smaller size, more strongly pyriform shape, weaker and less extensive apertural dentition, plate-like columellar margin of the posterior canal and more extensive basal flanges. True U. leptorhyncha is also recorded from the Cadell Formation of South Australia, demonstrating that the two species were sympatric in the Murray Basin. The specimens originally referred to Cypraea contusa var. from the Cadell Formation have had a confusing taxonomic history and they are here named as a new species Lyncina (Austrocypraea) cadella sp. nov. The new species differs from true L. (A.) contusa in its smaller size, less extensive malleations of the dorsal surface, fewer apertural teeth and a projecting internal margin of the fossula. These two new species boost a small but growing list of species that were endemic to the Murray Basin during the middle Miocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号