首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   3篇
  2023年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   7篇
  2015年   1篇
  2014年   5篇
  2013年   28篇
  2012年   2篇
  2011年   7篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   6篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1957年   1篇
  1953年   1篇
排序方式: 共有139条查询结果,搜索用时 31 毫秒
61.
We examined whether highway traffic volume changed the rates of movement (habitat permeability) for ten mammalian species in the central Canadian Rocky Mountains. Winter track count data were collected on four highways of varying traffic volume: the Trans-Canada Highway (TCH) (14,000 annual average daily traffic [AADT]) and 1A Highway (3,000 AADT) in Banff National Park and the Highway 40 (5,000 AADT) and Smith Dorrien Trail in Kananaskis Country (2,000 AADT). Permeability represented the ratio of road crossing tracks/km to tracks/km on transects adjacent to roads. We compared permeability at the community level and for carnivore and ungulate guilds, using a Kruskal–Wallis H -test. Traffic volume significantly reduced habitat permeability for the community ( P  < 0.05). Pair-wise Kruskal–Wallis tests showed that habitat permeability was significantly reduced for carnivores at high traffic volume ( P  = 0.008) and for ungulates at very high traffic volume ( P  < 0.043). Cross-referencing with winter traffic counts, we found movement was impaired for carnivores when traffic ranged from 300 to 500 vehicles per day (VPD) and for ungulates between 500 and 5,000 VPD. Our results indicated that the TCH requires mitigation to restore habitat permeability for all species and yielded strong evidence that the Highway 40 is a priority for mitigation.  相似文献   
62.
63.
This study presents isotopic data (δ13C and δ15N from bone collagen) for 104 samples representing 29 vertebrate taxa from late pre-contact through to contact era (ca. 2000 – 100 BP) Haida Gwaii (British Columbia, Canada) from a wide variety of mostly marine organisms. The results demonstrate the considerable isotopic variability that characterizes potential prey items in coastal contexts and underscores the need for baseline faunal data to interpret human subsistence practices. Based on these data, a detailed marine food web was constructed, which provides insight into local ecological conditions. We present a simple method for quantifying the trophic level of ancient fauna using δ15N of bone collagen. Finally, we discuss the implications of this study for the reconstruction of human diet.  相似文献   
64.
65.
66.
67.
68.
69.
70.
Dettmann, M.E., Clifford, H.T., Peters, M., June 2012. Emwadea microcarpa gen. et sp. nov.—anatomically preserved araucarian seed cones from the Winton Formation (late Albian), western Queensland, Australia. Alcheringa, 217–237. ISSN 0311-5518.

A new genus and species, Emwadea microcarpa Dettmann, Clifford & Peters, is established for ovulate/seed cones with helically arranged cone scales bearing a centrally positioned, inverted ovule from the basal Winton Formation (late Albian), Eromanga Basin, Queensland. The cones are small, prolate ellipsoidal (9.5–14 mm vertical axis, 6.3–8.7 mm transverse axis) with wedge-shaped cone scales bearing winged seeds attached adaxially to the scale only by tissues surrounding the vasculature entering the ovule. Ovuliferous tissue that is free from the cone scale extends distally from the chalaza; the seeds' lateral wings are derived from the integument. Foliage attached to the cones is spirally arranged, imbricate and with spreading and incurved bifacial blades with acute tips; stomata are arranged in longitudinal files and are confined to the adaxial surface. The cone organization testifies to placement within the Araucariaceae, and is morphologically more similar to Wollemia and Agathis than to Araucaria.

Mary Dettmann [mary.dettmann@qm.qld.gov.au] and Trevor Clifford, Queensland Museum, PO Box 3300, South Brisbane, Q 4101, Australia; Mark Peters, PO Box 366 Gumeracha, SA 5233, Australia. Received 31.3.2011; revised 23.8.2011; accepted 5.9.2011.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号