首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  2013年   20篇
  2004年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
The goal of this paper is to develop a modified Bouc-Wen hysteretic model from cyclic loading test data for reinforced columns, including the behavior of stiffness degradation, strength deterioration, pinching and softening effects of RC members. Seismic demands on this inelastic single degree of freedom system when subjected to both near-fault ground motion and far-field ground motion excitations were examined.

The cyclic loading test of reinforced concrete columns was experimentally observed and a system identification computer program was developed to solve each control parameter of the hysteretic model. A least-squared method for identifying parameters of the model is proposed in this paper. The hysteretic constitutive law produces a smoothly varying hysteresis such as the control-parameters for strength deterioration, stiffness degradation, pinching and softening effects. Two implementations of (1) flexure damage and (2) shear damage were conducted to provide better understanding of hysteretic behavior of RC structural members. A pseudo-dynamic experiment was also developed to verify the model parameters.

Based on the developed hysteretic model, the seismic demand of this inelastic model was investigated by using both near-fault ground motion data and far-field ground motion data as input motion. An RT inelastic response spectrum from different hysteretic models was generated.  相似文献   
12.
13.
An explicit integration method with unconditional stability was proposed and presented in this paper. Numerical characteristics of this explicit method for linear elastic sys-tems are almost the same as those of the constant average acceleration method while for a nonlinear system it is more efficient in computing than for the constant average acceleration method. This explicit method integrates the most promising advantages possessed by the explicit and implicit methods. No limitation on the time step in satisfying the stability limit, which is the most important property for an implicit method, is theoretically proved for this explicit method. Furthermore, the avoidance of solving any implicit system or using any iterative procedure, which usually brings considerable simplification in practical applications for explicit methods, leads to the very low cost of one explicit step. Thus, the computational effort can be significantly reduced when compared to implicit methods in each time step. Consequently, this explicit method can be used to solve dynamic problems efficiently due to the unconditional stability and the very low cost of explicit steps. Rough guidelines with regards to the selection of a time step in achieving accurate solutions for the constant average acceleration method are also appropriate for the proposed explicit method.  相似文献   
14.
This study adopts a random procedure in the evaluation of the effect of the rotational component of earthquake on the accidental eccentricity of symmetric and asymmetric buildings. The spectral density function of the rotational component of earthquake acceleration (about the vertical axis) is obtained on the basis of the spectral density function of the horizontal component of earthquake acceleration. The rotational component of an earthquake can increase the response of the structure. The degree of the increase is highly dependent upon the dynamic characteristics of the system and the rotational component of the earthquake. To bring this increase under consideration, seismic codes represent a parameter referred to as accidental eccentricity, as a part of the design eccentricity. The purpose of the present study is to estimate the value of this increase and to make appropriate suggestions based on frequency domain analysis.  相似文献   
15.
The primary focus of a structural shake table system is the accurate reproduction of acceleration records for testing. However, many systems deliver variable and less than optimal performance, particularly when reproducing large near-field seismic events that require extreme table performance. Improved identification and control methods are developed for large hydraulic servo-actuated shake table systems that can exhibit unacceptable tracking response for large, near-field seismic testing. The research is presented in the context of a 5-tonne shake table facility at the University of Canterbury that is of typical design. The system is identified using a frequency response approach that accounts for the actual magnitudes and frequencies of motion encountered in seismic testing. The models and methods developed are experimentally verified and the impact of different feedback variables such as acceleration, velocity and displacement are examined.

The methods show that shake table control in testing large near-field seismic events is often a trade off between accurate tracking and nonlinear velocity saturation of the hydraulic valves that can result in severe acceleration spikes. Control methods are developed to improve performance and include both acceleration and displacement feedback to reduce the acceleration spikes, and record modification, where the reference signal is modified to conform to the shake table's operational parameters. Results show record modification gives exact tracking for near-field ground motions, and optimal system response for reference signals with velocity components greater then the system capabilities. Overall, the research presents a methodology for simple effective identification, modelling, diagnosis and control of structural shake table systems that can be readily generalised and applied to any similar facility.  相似文献   
16.
After the 5.6 earthquake that struck Slovenia on Easter day in 1998, a quick survey was organised to perform a series of field measurements aimed at estimating site amplification. The possibility of recording aftershocks in the immediate aftermath of the main event improves the reliability of Nakamura's technique. The most affected sites that were sampled are located in the areas of Bovec and Dreznica. The damage pattern shows strong variations on short scale range. The typology of the buildings is very similar over the entire area being surveyed, and it is therefore likely that most of the variation could be attributed to site amplification effects. Local geology appears to be the dominant factor in most of the damage observed, and it can be qualitatively linked to empirical amplification functions obtained with Nakamura's technique. The damage enhancement between neighbouring sites is well correlated with amplification in a frequency range relevant to building vibration.  相似文献   
17.
A new approach has been presented to characterise phase spectra for simulating realistic nonstationary characteristics in synthetic accelerograms. The phase characteristics of the recorded earthquake accelerograms have been studied for this purpose and it has been found that the phase curve/unwrapped phases exhibit a monotonic downward trend which allows the problem of phase characterisation to be cast as a constrained nonlinear programming problem. The phase spectrum is first characterised by matching mean and variance of the generated distribution of relative phases with those obtained from recorded motions. As a practical application, it is shown how phase spectra can be characterised for an ensemble of synthetic accelerograms so as to maximise the severity of sample realisations.  相似文献   
18.
Utilising the Kanai-Tajimi and Clough-Penzien spectrums and the pseudo-excitation algorithm in the frequency domain, parametric study is performed to examine the effect of the dominant frequency of ground motion on the optimum parameters and effective-ness of multiple tuned mass dampers (MTMD) with identical stiffness and damping coefficient but with unequal mass. The examination of the optimum parameters is con-ducted through the minimisation of the minimum values of the maximum displacement and acceleration dynamic magnification factors of the structure with the MTMD. The optimum parameters of the MTMD include the optimum frequency spacing reflecting the robustness, the average damping ratio and the tuning frequency ratio. Minimisation of the minimum values of the maximum displacement and acceleration dynamic mag-nification factors, nondimensionalised respectively by the maximum displacement and acceleration dynamic magnification factors of the structure without the MTMD, is used to measure the effectiveness of the MTMD. The results indicate that in the two cases where both the total mass ratio is below 0.02 and the total mass ratio is above 0.02, but the dominant frequency ratio of ground motion is below unity (including unity), the earthquake ground motion can be modelled by a white noise. It is worth noting, however, that for the total mass ratio above 0.02, the Kanai-Tajimi Spectrum or Clough-Penzien spectrum needs to be employed to design the MTMD for seismic structures in situations where the dominant frequency ratio of ground motion is beyond unity.  相似文献   
19.
In this paper, results of an analytical study on the non-linear dynamic behaviour of reinforced concrete buildings designed according to modern European Codes (Eurocode 8) are presented. An investigation of the seismic performance of 8-storey regular and irregular buildings is carried out. The study is aimed at evaluating their seismic structural performance with a focus on the influence of several design parameters used in the code affecting non-linear response. Towards this aim, use is made of a suite of spectrum-compatible artificial accelerograms. It is concluded that EC8 provisions, although correct in principle, are conservative, at least for the structures and input motions considered, in view of the very low predicted damage levels observed in most cases.  相似文献   
20.
Long period microtremors with periods ranging from 0.5 to 10 seconds were measured in the Anchorage metropolitan area. Two horizontal components of motion were recorded at 81 sites uniformly distributed throughout the basin with spatial resolution of about 2 km. Recording at each site was done for 300 seconds with a sampling rate of 20 Hz. Repeated measurements were performed at a bedrock reference site simultaneously with the measurements in the field. The measurements were completed in six days. In addition, multiple recordings were obtained concurrently at the reference bedrock site and a sediment site. Based on these measurements the Fourier spectra were calculated for each of the site. Ground motion amplification is determined in terms of spectral ratio of horizontal spectral amplitudes at a sediment site and the reference bedrock site. Mean spectral ratio contours were evaluated for different period bands. The results show that for period band 3 to 5 seconds the spectral ratio contours agree well with the ground failure susceptiblity map of Anchorage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号