首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Aftab, K., Khan, M.A., Ahmad, Z. & Akhtar, M., February 2016. Progiraffa (Artiodactyla: Ruminantia: Giraffidae) from the Lower Siwalik Subgroup (Miocene) of Pakistan. Alcheringa 40, xxx–xxx. ISSN 0311-5518

Previously, Progiraffa exigua has been reported only from the Kamlial Formation (ca 18.3–14.2 Ma) of the Siwalik Group. We record Progiraffa exigua from the Lower Siwalik Subgroup at five localities: Jaba, Chinji Rest House, Rakh Wasnal, Dhok Bun Amir Khatoon and Ghungrila, Pakistan, thus extending the range of P. exigua to the Chinji Formation of the Siwalik Group (ca 14.2–11.2 Ma).

Kiran Aftab [], Zaheer Ahmad [], Zoology Department, GC University, Lahore, Pakistan; Muhammad Akbar Khan [], Muhammad Akhtar [], Dr Abu Bakr Fossil Display & Research Centre, Zoology Department, University of the Punjab, Lahore, Punjab, Pakistan.  相似文献   


2.
Khan, M.A., Babar, M.A., Akhtar, M., Iliopoulos, G., Rakha, A. & Noor, T., November 2015. Gazella (Bovidae, Ruminantia) remains from the Siwalik Group of Pakistan. Alcheringa 40, xxx–xxx. ISSN 0311-5518.

New gazelle fossils are described from the Siwalik Group of Pakistan. The material includes horncores, maxilla and mandible fragments, and isolated teeth. The available samples are assigned to three Gazella species: Gazella sp. in the Lower Siwalik Subgroup (ca 14.2–11.2 Ma), and G. lydekkeri and G. superba in the Middle Siwalik Subgroup (ca 10.2–3.4 Ma). Based on a review of the Siwalik Group gazelles, G. padriensis is synonymized with G. lydekkeri. Gazella superba Pilgrim, 1939 sensu stricto is a large form and is a valid species of the genus in the Siwalik Group.

Muhammad Akbar Khan [], Muhammad Adeeb Babar [], Muhammad Akhtar [], Allah Rakha [], Tuba Noor [], Abu Bakr Fossil Display & Research Centre, Department of Zoology, Quid-e-Azam Campus, Punjab University (54590), Lahore, Pakistan; George Iliopoulos [], Geology Department of the University of Patras, Patras, Greece.  相似文献   


3.
Vacelet, J., James, B. 1, & Zibrowius, H., November 2017. New records of the hypercalcified sponge Plectroninia (Calcarea, Minchinellidae) in the Recent deep ocean. Alcheringa 42, 312–319. ISSN 0311-5518

Numerous small specimens of hypercalcified sponges of the genus Plectroninia (Jurassic to Recent) are recorded from deep water in the Atlantic, Indian and Pacific oceans, where they are attached to diverse hard substrata, mostly scleractinian skeletons. Being represented as skeletons of linked calcareous tetractines with an incomplete free spicule complement, the specimens could not be identified at the species level. These observations show that Plectroninia spp. have a wide distribution in the bathyal zone of the Recent World Ocean, where they may be the most common calcareous sponges.

Jean Vacelet* [], Benjamin James [], Helmut Zibrowius [] UMR 7263 IMBE, Institut Méditerranéen de Biodiversité et d’Écologie Marine et Continentale, CNRS, IRD, Aix Marseille Université, Avignon Université, Station Marine d’Endoume, Rue de la Batterie des Lions, 13007 Marseille, France.  相似文献   


4.
Tineo, D.E., Bona, P., Pérez, L.M., Vergani, G.D., González, G., Poiré, D.G., Gasparini, Z.N. & Legarreta, P., 1.10.2014. Palaeoenvironmental implications of the giant crocodylian Mourasuchus (Alligatoridae, Caimaninae) in the Yecua Formation (late Miocene) of Bolivia. Alcheringa 39, xxx–xxx. ISSN 0311-5518

Outcrops of the Yecua Formation (late Miocene) are exposed for approximately 230 m along the La Angostura section of the Piraí River (50 km southwest of Santa Cruz de la Sierra). These reveal massive (argillic palaeosols) and laminated (quiet-water lacustrine and marsh settings) mudstones interbedded with thin sandstones containing microfossils, molluscs and vertebrate remains. Significantly, the succession hosts a giant crocodylian, Mourasuchus (Alligatoridae, Caimaninae), which is represented by both skull and postcranial fragments found in association with freshwater turtles and fishes. Mourasuchus was distributed widely from the middle Miocene of Colombia to upper Miocene of Venezuela, Brazil and Argentina, suggesting connections between major fluvial systems and an active mechanism for dispersal of South American freshwater vertebrates during the Miocene.

David Eric Tineo [] and Daniel Gustavo Poiré [], CONICET—Centro de Investigaciones Geológicas, Universidad Nacional de La Plata. Calle 1 (644), B1900FWA, La Plata, Argentina; Paula Bona [] and Zulma Gasparini [], CONICET—División Paleontología Vertebrados, Museo de La Plata. Paseo del Bosque s/n, B1900FWA, La Plata, Argentina; Leandro Martín Pérez [] CONICET—División Paleozoología Invertebrados, Museo de La Plata. Paseo del Bosque s/n, B1900FWA, La Plata, Argentina; Gustavo Dardo Vergani []Pluspetrol S.A. Lima (339), C1073AAG, Ciudad Autónoma de Buenos Aires, Argentina; Gloria González Rigas []Pluspetrol Bolivia Corporation SA, Av. Grigotá esq. Las Palmas, Santa Cruz de la Sierra, Bolivia; Pablo Legarreta []—Pluspetrol S.A. Lima (339), C1073AAG, Ciudad Autónoma de Buenos Aires, Argentina.  相似文献   

5.
Liu, X.H., Li, Y., Yao, Y.Z. & Ren, D., April 2016. A hairy-bodied tettigarctid (Hemiptera: Cicadoidea) from the latest Middle Jurassic of northeast China. Alcheringa 40, xxx–xxx. ISSN 0311-5518

Extant tettigarctids are also known as hairy cicadas because they are covered by long and abundant hairs. This character had not been reported in fossil species of Tettigarctidae because previous examples were poorly preserved or lacked long hairs. Hirtaprosbole erromera gen. et sp. nov. (Tettigarctidae) with a hairy body, from the latest Middle Jurassic Jiulongshan Formation of Daohugou, Inner Mongolia, China, is described here. This new species provides evidence that tettigarctids with long dense hairs had appeared by the latest Middle Jurassic and lived at high altitudes.

Xiao-hui Liu [], Yi Li [], Yun-zhi Yao*[Corresponding author: ] and Dong Ren [], College of Life Sciences, Capital Normal University, Xisanhuanbeilu 105 Haidian District, Beijing, PR China 100048.  相似文献   


6.
Dong, F., Shih, C.K., Skibińska, K., Krzemiński, W. & Ren, D., 10.4.2015. New species of Tanyderidae (Diptera) from the Jiulongshan Formation of China. Alcheringa 39, xxx–xxx. ISSN 0311-5518

Two new tanyderid species of Praemacrochile Kalugina, 1985 (P. dryasis, P. ovalum) and one new tanyderid species of Protanyderus Handlirsch, 1909 (P. astictum) are described and illustrated from the late Middle Jurassic Jiulongshan Formation of Daohugou in eastern Inner Mongolia, China. These species are circumscribed using well-preserved fossil specimens with bodies and complete wings. We also collected and identified new material of two species of Praemacrochile (P. ansorgei Lukashevich & Krzemiński and P. chinensis, Krzemiński & Ren) and one species of Protanyderus (P. vulcanium Zhang) from the same locality.

Fei Dong [], Dong Ren [] and Chungkun Shih [], College of Life Sciences, Capital Normal University, Xisanhuanbeilu 105, Haidian District, Beijing, PR China 100048; Kornelia Skibińska [] Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland; Wies?aw Krzemiński [] Pedagogical University of Cracow, Faculty of Geography and Biology, Institute of Biology, ul. Podchor??ych 2, 30-084 Kraków, ma?opolskie, Poland.  相似文献   

7.
Yang, T.L., He, W.H., Zhang, K.X., Wu, S.B., Zhang, Y., Yue, M.L., Wu, H.T. & Xiao, Y.F., November 2015. Palaeoecological insights into the Changhsingian–Induan (latest Permian–earliest Triassic) bivalve fauna at Dongpan, southern Guangxi, South China. Alcheringa 40, xxx–xxx. ISSN 0311-5518.

The Talung Formation (latest Permian) and basal part of Luolou Formation (earliest Triassic) of the Dongpan section have yielded 30 bivalve species in 17 genera. Eight genera incorporating 11 species are systematically described herein, including three new species: Nuculopsis guangxiensis, Parallelodon changhsingensis and Palaeolima fangi. Two assemblages are recognized, i.e., the Hunanopecten exilisEuchondria fusuiensis assemblage from the Talung Formation and the Claraia dieneri–Claraia griesbachi assemblage from the Luolou Formation. The former is characterized by abundant Euchondria fusuiensis, an endemic species, associated with other common genera, such as Hunanopecten, which make it unique from coeval assemblages of South China. A palaeoecological analysis indicates that the Changhsingian bivalve assemblage at Dongpan is diverse and represented by various life habits characteristic of a complex ecosystem. This also suggests that redox conditions were oxic to suboxic in deep marine environments of the southernmost Yangtze Basin during the late Changhsingian, although several episodes of anoxic perturbations and declines in palaeoproductivity saw deterioratation of local habitats and altered the taxonomic composition or population size of the bivalve fauna.

Tinglu Yang [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Weihong He* [] and Kexin Zhang [], State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Shunbao Wu [], Yang Zhang [], Mingliang Yue [], Huiting Wu [] and Yifan Xiao [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China.  相似文献   


8.
Zheng, D., Wang, H., Nel, A., Dou, L., Dai, Z., Wang, B. & Zhang, H. 27 June 2019. A new damsel-dragonfly (Odonata: Anisozygoptera: Campterophlebiidae) from the earliest Jurassic of the Junggar Basin, northwestern China. Alcheringa XX, X–X. ISSN 0311-5518.

A new genus and species of campterophlebiid damsel-dragonfly, Jurassophlebia xinjiangensis gen. et sp. nov., is described from the Lower Jurassic Badaowan Formation in the Junggar Basin, northwestern China. Jurassophlebia differs from all other campterophlebiid genera in having PsA in the same orientation as the distal branch of AA, and in its uniquely open subdiscoidal cell with very acute apical angle in the hind wing. The new discovery adds to the Asian diversity of damsel-dragonflies in the earliest Jurassic.

Daran Zheng* [], He Wang [], Bo Wang [], and Haichun Zhang [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; André Nel [], Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France; Longhui Dou [], Comprehensive Geology Exploration Team, Xinjiang Coalfield Geology Bureau, West Mountain Road, Ürümqi 830000, PR China; Zhenlong Dai [], No.9 Geological Team, Xinjiang Bureau of Geology and Mineral Resources, Ürümqi 830011, PR China; Daran Zheng also affiliated with Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.  相似文献   

9.
Binfield, P., Archer, M., Hand, S.J., Black, K.H., Myers, T.J., Gillespie, A.K. & Arena, D.A., June 2016. A new Miocene carnivorous marsupial, Barinya kutjamarpensis (Dasyuromorphia), from central Australia. Alcheringa 41, xx–xx. ISSN 0311-5518.

A new dasyuromorphian, Barinya kutjamarpensis sp. nov., is described on the basis of a partial dentary recovered from the Miocene Wipajiri Formation of northern South Australia. Although about the same size as the only other species of this genus, B. wangala from the Miocene faunal assemblages of the Riversleigh World Heritage Area, northwestern Queensland, it has significant differences in morphology including a very reduced talonid on M4 and proportionately wider molars. Based on the structural differences and the more extensive wear on its teeth, the central Australian species might have consumed harder or more abrasive prey in a more silt-rich environment than its congener, which hunted in the wet early to middle Miocene forests of Riversleigh.

Pippa Binfield [], Michael Archer [], Suzanne J. Hand [], Karen H. Black [], Troy J. Myers [] Anna K. Gillespie [] and Derrick A. Arena [], PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales 2052, Sydney, Australia.  相似文献   


10.
Liu, Q., Zhang, H.C., Wang, B., Fang, Y., Zheng, D.R., Zhang, Q. & Jarzembowski, E.A., 2014. A new saucrosmylid lacewing (Insecta, Neuroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China. Alcheringa 38. ISSN 0311-5518.

A new genus and new species of Saucrosmylidae (Insecta, Neuroptera) are described (Daohugosmylus castus) based on a well-preserved hindwing from the Middle Jurassic of Daohugou, Inner Mongolia, China. Daohugosmylus gen. nov. is distinguished by a large and nearly semi-circular hindwing, relatively wide R1 space possessing several rows of cells, anteriorly bent Rs, dense crossveins over the entire wing, and smooth outer margin.

Qing Liu (corresponding author) [], Haichun Zhang [], Bo Wang [], Yan Fang [], Daran Zheng [], Qi Zhang [] and Edmund A Jarzembowski [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, PR China; secondary address of Daran Zheng & Qi Zhang, University of Chinese Academy of Sciences, Beijing, 100049, PR China; and Ed Jarzembowski, Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK. Received 13.11.2013; revised 20.1.2014; accepted 21.1.2014.  相似文献   

11.
Wang, Y., Wang, Y. & Du, W., February 2016. The long-ranging macroalga Grypania spiralis from the Ediacaran Doushantuo Formation, Guizhou, South China. Alcheringa 40, xxx–xxx. ISSN 0311-5518

Grypania spiralis (Walcott) Walter et al., a macroalga previously reported in pre-Ediacaran successions, has been collected, together with abundant macrofossils (i.e., the Wenghui biota), from black shales of the upper Doushantuo Formation (ca 593 to 551 Ma) in northeastern Guizhou, South China. Morphologically, G. spiralis represents a carbonaceous ribbon with a continuum of forms from coiled to nearly straight. Its helicoid main body might have been suspended in the water column for photosynthesis with one end anchored or nestled into soft sediments. Grypania possessed morphological stability, and its habit endowed great competitiveness for sunlight. Remarkably, it did not change significantly in size or morphology over more than 1200 Myrs.

Ye Wang [], School of Earth Sciences and Resources, PR China University of Geosciences, Beijing 100083, PR China; Yue Wang [] (corresponding author), School of Resources and Environments, Guizhou University, Guiyang 550003, PR China; Wei Du [], Department of Earth Science and Astronomy, The University of Tokyo, Tokyo 153-8902, Japan.  相似文献   


12.
ZHENG, D., DONG, C., WANG, H., YE, Y., WANG, B., CHANG S-C. & ZHANG, H., May 2017. The first damsel-dragonfly (Odonata: Isophlebioidea:Campterophlebiidae) from the Middle Jurassic of Shaanxi Province, northwestern China. Alcheringa 41, 509–513. ISSN 0311-5518.

Campterophlebiidae is the most diverse family of fossil odonatans in China with ten genera recovered mostly from Middle Jurassic strata of Inner Mongolia. We describe a well-preserved campterophlebiid damsel-dragonfly from the Middle Jurassic Yanan Formation in Shanxi Province, northwestern China. This discovery adds to the diversity of Campterophlebiidae and identifies a new Middle Jurassic insect fossil locality in China. Within Campterophlebiidae, the new taxon most closely resembles Ctenogampsophlebia from the Middle Jurassic of Inner Mongolia but differs from other genera in having vein AA with four parallel posterior branches uncrossed in the anal triangle.

Daran Zheng [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China; Chong Dong [], He Wang [] and Haichun Zhang [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; Yifei Ye [] Shannxi Non-ferrous Yulin Coal Co., Ltd, Yulin, PR China; Bo Wang [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China; Su-Chin Chang [] Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.  相似文献   


13.
Hollis, C.J, Stickley, C.E., Bijl, P.K., Schiøler, P., Clowes, C.D., Li, X, Campbell, H. March 2017. The age of the Takatika Grit, Chatham Islands, New Zealand. Alcheringa 41, xxx–xxx. ISSN 0311-5518.

The oldest Paleogene strata on Chatham Islands, east of New Zealand, are the phosphatized conglomerates and sandstones of the Takatika Grit that crops out on the northeastern coast at Tioriori and unconformably overlies the Chatham Schist. An intact Cretaceous–Paleogene boundary transition is not preserved at this locality. New biostratigraphic analysis of dinoflagellate, diatom and radiolarian microfossil assemblages confirms that the Takatika Grit is of late early–middle Paleocene (New Zealand Teurian stage) age but contains reworked microfossils of early Campanian (Early Haumurian) age. Vertebrate fossils found in this unit are inferred to be a mixture of reworked Cretaceous and in situ Paleocene bones and teeth. The overlying Tutuiri Greensand is of middle–late Paleocene age in its lower part and also contains reworked Cretaceous microfossils.

Christopher J. Hollis [], Chris Clowes [], Xun Li [], Hamish Campbell [], GNS Science, PO Box 30-368, Lower Hutt 5040, New Zealand; Catherine Stickley, Evolution Applied Limited, 50 Mitchell Way, Upper Rissington, Cheltenham GL54 2PL, UK []; Peter Bijl [], Marine Palynology and Paleoceanography, Department of Earth Sciences, Utrecht University, 3584 CS Utrecht, the Netherlands; Poul Schiøler [], Morgan Goodall Palaeo, Unit 1/5 Arvida St, Malaga, WA 6090, Australia.  相似文献   


14.
López-Gappa, J., Pérez, L.M. & Griffin, M. February 2017. First record of a fossil selenariid bryozoan in South America. Alcheringa XX, xxx-xxx. ISSN 0311-5518.

Selenariidae Busk 1854 (Bryozoa) is considered endemic to Australia and New Zealand. Here we describe a new species of Selenaria Busk 1854 from the lower Miocene Monte León Formation (Patagonia, Argentina). Selenaria lyrulata sp. nov. is characterized by autozooids with a lyrula-like, anvil-shaped cryptocystal denticle, opesiular indentations and lateral condyles, as well as avicularia with a shield of fused costae. This is the first record of a selenariid bryozoan in South America.

Juan López-Gappa [] CONICET—Museo Argentino de Ciencias Naturales. Av. Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina; Leandro Martín Pérez [] and Miguel Griffin [], CONICET—División Paleozoología Invertebrados, Museo de La Plata. Paseo del Bosque s/n, B1900FWA, La Plata, Argentina.  相似文献   


15.
Walde, D.H.-G., Weber, B., Erdtmann, B.-D. & Steiner, M. 20 June 2019. Taphonomy of Corumbella werneri from the Ediacaran of Brazil: sinotubulitid tube or conulariid test? Alcheringa 43, 335–350. ISSN 0311-5518

The problematic late Ediacaran tubular fossil Corumbella werneri is revised based on two-dimensional compressions, and new three-dimensionally preserved specimens from the Tamengo Formation of the Corumbá Region in Mato Grosso do Sul, west-central Brazil. These fossils represent some of the oldest skeletonized metazoans and were originally described from diagenetically compacted tubes that prompted conflicting interpretations as either Ediacaran coronate scyphozoan exoskeletons, or conulariid tests. Our new material from Corumbá permits a morphological and taphonomic revision of C. werneri, which we suggest was probably a calcareous sinotubulitid. Corumbella werneri closely resembles the late Ediacaran Sinotubulites from South China, as well as the Silurian worm tube Eoalvinellodes, which has similar exterior ornamentation. Ultrastructurally, the tubes of C. werneri exhibit a coarse sparitic microtexture, which we attribute to diagenetic alteration. Partial flexibility also supports interpretation as an originally weakly calcified, or entirely organic exoskeleton. We therefore reject placement of C. werneri as a conulariid scyphozoan, and instead, advocate possible relationships with marine annelids.

Detlef Hans-Gert Walde [], University of Brasília, Institute of Geosciences, Brasília-DF, Brazil; Bernd Weber [], Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstr. 74–100, D-12249 Berlin, Germany; Bernd-D. Erdtmann [], 1165 N Mountain View Road, Apache Junction, AZ 85119, USA; *Michael Steiner [], Freie Universität Berlin, Institut für Geologische Wissenschaften (Haus D), Malteserstr. 74–100, D-12249 Berlin, Germany.  相似文献   

16.
Gard, H.J.L. & Fordyce, R.E., August 2016. A fossil sea turtle (Testudines: Pan-Cheloniidae) from the upper Oligocene Pomahaka Formation, New Zealand. Alcheringa 41, XX–XX. ISSN 0311-5518.

An isolated turtle xiphiplastron similar to that of Puppigerus sp. is described from the upper Oligocene (27.3–25.2 Ma) Pomahaka Formation near Tapanui, Otago, New Zealand. The bone is unlike any previously described turtle from the Cenozoic of New Zealand and is from a newly recognized estuarine vertebrate locality. It represents the first Oligocene cheloniid turtle bone described from the southwest Pacific.

Henry J. L. Gard [] and R. Ewan Fordyce, [], Department of Geology, University of Otago, PO Box 56, Dunedin, 9054, Otago, New Zealand.  相似文献   


17.
Xu, H.-H., Wang, Y., Tang, P. & Wang, Y., May 2017. A new diminutive euphyllophyte from the Middle Devonian of West Junggar, Xinjiang, China and its evolutionary implications. Alcheringa 41, 524–531. ISSN 0311-5518.

A diminutive euphyllophyte, Douaphyton levigata gen. et sp. nov., is described from the upper Middle Devonian (Givetian) Hujiersite Formation of West Junggar, Xinjiang, China. The plant consists of more than three orders of axis branching, each axis being less than 2 mm wide. The second-order axes are short, laterally and alternately attached to the main axis. The third-order axes are paired and anisotomously divided, bearing the vegetative appendages or the fertile units. The fertile unit consists of a short recurved axis giving off up to four short pedicels along one side, each of which bears one to four pairs of terminal sporangia. Douaphyton has a three-dimensional branching system that has an intermediate form in the evolutionary context of euphyllophytes and lignophytes. It is also proposed that complex branching developed in multiple groups in the Middle Devonian.

*Hong-He Xu [], Yao Wang [], Peng Tang [], Yi Wang [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210,008, PR China. Yao Wang [] University of Science and Technology of China. 96 Jinzhai Road, Hefei, Anhui Province, 230,026, PR China.  相似文献   


18.
Cleal, C.J., Bhat, G.M., Singh, K.J., Dar, A.M., Saxena, A. & Chandra, S., February 2016. Spondylodendron pranabii—the dominant lycopsid of the late Mississippian vegetation of the Kashmir Himalaya. Alcheringa 40, xxx–xxx. ISSN 0311-5518.

The Sepukhovian fossil floras of the northern margins of Gondwana, on the shores of the Palaeotethys, are dominated by remains of an eligulate, mainly monopodial lycopsid with persistent leaves. The stems show considerable morphological and preservational variation that has historically resulted in the fossils having been assigned to many fossil-species and -genera. However, there is now clear evidence that this simply reflects variation within a single fossil-species, reflecting biological variation and the effects of variable taphonomy, for which the correct taxonomic name is Spondylodendron pranabii (Pal) comb. nov. Part of this morphological variation might have been due to variations in growth rate during the life of the individual plants, which in turn might reflect stressed growing conditions in a wetland habitat. The systematic position of Spondylodendron remains uncertain, owing to the lack of unequivocal evidence of reproductive structures, but it might have affinities with the Sublepidodendraceae.

Christopher J. Cleal [], Department of Natural Sciences, National Museum Wales, Cathays Park, Cardiff CF10 3NP, UK; G.M. Bhat [] and A.M. Dar, Department of Geology, University of Jammu, Jammu, India; Kamal Jeet Singh, [] and Anju Saxena [], Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow-226007, (U.P.) India; Shaila Chandra, Flat Number 105, Beverly Park Apartment 422, New Hyderabad, Lucknow-226007, (U.P.) India.  相似文献   

19.
Chen, J., Beattie, R., Wang, B., Jiang, H., Zheng, Y. & Zhang, H., 12 April 2019. The first palaeontinid from the Late Jurassic of Australia (Hemiptera, Cicadomorpha, Palaeontinidae). Alcheringa 43, 449–454. ISSN 0311-5518.

Palaeontinidae, an extinct group of large arboreal insects, has the most diverse record among the Mesozoic Hemiptera, but only a few taxa have been reported from the Southern Hemisphere. Herein, Talbragarocossus jurassicus Chen, Beattie & Wang gen. et sp. nov., one of the earliest representatives of ‘late’ Palaeontinidae, is described and illustrated from the Upper Jurassic Talbragar Fossil Fish Bed in New South Wales, Australia. This new taxon constitutes the first representative of Palaeontinidae in Australia and the first Jurassic example in Gondwanaland, providing significant distributional and stratigraphic extensions to the family.

Jun Chen*? [] and Yan Zheng? [], Institute of Geology and Paleontology, Linyi University, Shuangling Road, Linyi 276000, China. Bo Wang? [], Hui Jiang [] and Haichun Zhang [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. Robert Beattie [], Australian Museum, 1 William St., Sydney, NSW 2010, Australia. ?Also affiliated with: State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. ?Also affiliated with: Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号