首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper 16 geomagnetic storms in 1968–1978 recorded at 8 magnetic observatories located from polar to equatorial regions in the λ= 120°E longitudinal zone and its vicinity have been analysed. The horizontal component H traces of 27 h intervals have been sampled once every 1.5 min. The time sequences of the data thus obtained have been processed by the method of digital filtering and maximum entropy spectral analysis (MESA).The results of the analysis are compared with the associated solar wind parameters. It confirms that the geomagnetic disturbances are controlled by the solar wind in several ways, i.e. geomagnetic disturbances respond differently to various solar wind parameters or to the different ranges of them. The north-south component of the interplanetary magnetic field (IMF) Bz., the IMF latitude θ and the solar wind velocity V play the most important part in inducing geomagnetic storms.  相似文献   

2.
At the magnetopause, solar wind plasma interacts with the terrestrial magnetic field, with the consequent entry of solar wind energy into the magnetosphere and the ionosphere. Geomagnetic activity is one of the results. Planetary geomagnetic indices, e.g. Kp, Ap, Am, etc, have been designed to measure solar particle radiation by its magnetic effects. Long-term averages of these indices have established that solar wind energy input into the ionosphere maximizes around equinoctial months with minima around the solstices. Although considerable progress has been made to explain qualitatively the semiannual variation o1' geomagnetic activity, its component parts, representing the axial and equinoctial hypotheses, have not so far been put together with a high degree of quantitative precision. This paper demonstrates that the semiannual trend of geomagnetic activity can be reproduced quantitatively with good precision by using accurate astronomical data relating to the Sun-Earth geometry. The key factor is the combination of the varying solar declination and the heliographic latitude of the Earth during different months. Analysis shows that the seasonal trend of solar wind-magnetopause coupling is, in fact, controlled by a combination of the two competing theories, the axial and equinoctial, which have been advanced over the years to explain the semiannual variation in geomagnetic activity. Planetary ion density of the F2 layer of the ionosphere (F2pd) is another index of relatively higher accuracy which also shows marked maxima around the equinoxes. The observed seasonal trend of F2pd can be reproduced by using the semiannual trend of geomagnetic activity as derived from astronomical data with a correlation coefficient of 0.98. This analysis also brings out another important fact that the planetary indices, Kp, Ap, Am and AA, are somewhat deficient as they respond to solar declination only and do not bring out the contribution of the heliographic latitude of the Earth.  相似文献   

3.
Two main targets of space weather forecasts are to, predict solar energetic particles (SEPs) produced by flares and coronal mass ejections CMEs), and the energetic particles or hot plasma injected into the inner magnetosphere during magnetic storms and substorms. For the purpose of constructing models to predict these particle popuplations, we critically review the problems in flares and CMEs, and the problems in magnetic and substorms For flares and CMEs, we point out the importance of distinguishing the effects of flares from the effects of CMEs, because it seems that many physical processes operate commonlyto both phenomena and produce similar effects. Recent studies on SEP events have shown that advanced measurements of SEPs can distinguish between these two acceleration sources. We propose a possible relationship between flare and CMEs based on an idea of dual magnetic field structures of different characteristic scales. It is expected that further progress can be accomplished by vector magnetographs, sold X-ray telescopes, and advanced measurements of solar wind composition as well as SEP composition. Far magnetic storms and substorms, it is found that analysis by the linear filtering technique can give results which are very consistent with theoretical understanding. Therefore, it is strongly recognized that the next step should be fully theoretical studies, or simulations.  相似文献   

4.
The thermosphere is primarily energised by the combination of three sources of energy and momentum. Solar UV and EUV energy is absorbed globally on the dayside within the middle and upper thermosphere. There is a persistent, but highly variable, inflow of energy and momentum from the magnetosphere. These magnetospheric inputs are usually confined to high latitudes, except at times of very large geomagnetic disturbances. Tides and gravity waves upwell from their sources in the troposphere and stratosphere to deposit energy and momentum at levels from the middle mesosphere to the upper thermosphere. Solar EUV radiation between 120 ran and 250 nm photo-dissociates the molecules which dominate the composition of the lower thermosphere, in particular producing atomic oxygen which dominates the composition of the upper thermosphere. The combination of solar EUV radiation at wavelengths shorter than 120 nm, plus energetic (mainly) charged particles from the magnetosphere, also ionise the neutral constituents of the thermosphere, creating the ionosphere. Particularly at high latitudes, within the geomagnetic polar caps and auroral ovals, the energetic, dynamical and chemical coupling and interactions between the thermosphere and ionosphere dominate the structural and dynamical response of both the thermosphere and ionosphere to solar and geomagnetic inputs of energy and momentum.Comparisons between predictions using global thermosphere-ionosphere coupled models and comparable observational sets have shown encouraging agreement during periods of relatively quiet geomagnetic activity. This indicates that the major energetic, ionisation, chemical and dynamical processes and interactions can be described in models with reasonable accuracy. During periods of high geomagnetic activity, and particularly during major geomagnetic storms, large rapid disturbances of the thermosphere occur with extremely rapid variations. These disturbances are observed as large increases of temperature, density, major changes of neutral composition, and with the development of high speed wind flows and large amplitude waves which may propagate to affect the entire globe. Since the ionosphere is formed from thermospheric constituents and affected by thermospherc dynamics, the gross disturbances of the ionosphere during highly disturbed periods are related to contemporary changes of density, composition and flows of the thermosphere, as well as changes of ionisation sources and electric fields. Observations which describe the nature and scale of disturbances of the thermosphere during geomagnetic storms will be used, in combination with appropriate global numerical simulations, to aid interpretation of storm-time ionospheric phenomena. The role of energetic, dynamical and chemical coupling between the thermosphere and ionosphere is emphasised.  相似文献   

5.
The period July–September 1982 was the peak of geomagnetic activity during the 21st solar cycle. There were four very severe storms, which covered the strongest period of geomagnetic disturbances seen in recent years, namely the storms on 13/14 July, 7 August, 6/7 September and 21/22 September 1982. The present paper analyzes the corresponding ionospheric behaviour during these major magnetic storms, along with the storms that occurred around the local summer months during the preceding years within both hemispheres of the East Asia-Oceanian sector. It is shown that during the summer months in the low-latitudes and lower mid-latitudes of this sector the strong geomagnetic storms generally result in depletion of the ionospheric electron content and electron concentration at the F-region peak during both day-time and night-time. The situation in summer is quite different from other seasons and is basically unrelated to SSC time or/and maximum disturbance time and duration.  相似文献   

6.
Monthly and yearly averages of the pulsation activity in the mid-latitude station Nagycenk are compared to solar wind velocity and ionospheric-plasmaspheric electron concentration data. It is found that pulsation amplitudes are correlated with solar wind velocities with the exception of some month around December in solar maximum years, when they are significantly lower than computed from the corresponding solar wind velocities. This decrease can be caused either by a cutoff of the magnetospheric shell resonances or by local ionospheric damping. In addition to these effects, pulsations amplitudes slightly depend also on the geomagnetic activity and have a semi-annual activity change with maxima around equinoxes.  相似文献   

7.
A three-dimensional, time-dependent, MHD model of solar-disturbance-caused storms (Wu, 1993; Wu et al., 1996a) is used to predict the turning direction of the interplanetary magnetic field (IMF) at Earth. More explicitly, we examine the polarity of Bz caused by solar disturbances on the Sun. Three manifestations of solar disturbances, as studied by previous workers, are examined. Firstly, twenty-nine kilometric Type II events, associated (Cane, 1985) with geomagnetic storms, are studied within the context of our three-dimensional model. Then, an additional eleven long-duration X-ray events (LDEs) with radio fluxes greater than 100 solar flux units were examined; these events were not associated with interplanetary Type II events but were also associated (Cane, 1985) with geomagnetic storms. Finally, in situ interplanetary phenomena that caused ten large (Dst < −100 nT, the intensification of the storm) geomagnetic storm episodes (Tsurutani et al., 1988) near solar maximum are also studied via the Bz predictions of our 3D MHD model. The accuracy of these Bz turning-direction-predictions is found to be as follows: (1) for the kilometric Type II events, the model's prediction was successful for 26 of the 29 events studied; (2) 10/11 for the LDE events; and (3) 7/9 for the major geomagnetic storm events. The overall prediction accuracy of these three independent data sets is 43/49. Thus, consideration of these three independent data sets strongly suggests that the recipe proposed by the basic 3D MHD model may be valid for a zero-th order prediction scheme.  相似文献   

8.
Within the last 7–8 years, there has been a substantial growth in our knowledge of the solar and interplanetary causes of geomagnetic storms at Earth. This review article will not attempt to cover all of the work done during this period. This can be found elsewhere. Our emphasis here will be on recent efforts that expose important, presently unanswered questions that must be addressed and solved before true predictability of storms can be possible. Hopefully, this article will encourage some readers to join this effort and perhaps make major contributions to the field.  相似文献   

9.
Geomagnetic storm effects at heights of about 0–100 km are briefly (not comprehensively) reviewed, with emphasis being paid to middle latitudes, particularly to Europe. Effects of galactic cosmic rays, solar particle events, relativistic and highly relativistic electrons, and IMF sector boundary crossings are briefly mentioned as well. Geomagnetic storms disturb the lower ionosphere heavily at high latitudes and very significantly also at middle latitudes. The effect is almost simultaneous at high latitudes, while an after-effect dominates at middle latitudes. The lower thermosphere is disturbed significantly. In the mesosphere and stratosphere, the effects become weaker and eventually non-detectable. There is an effect in total ozone but only under special conditions. Surprisingly enough, correlations with geomagnetic storms seem to reappear in the troposphere, particularly in the Northern Hemisphere. Atmospheric electricity is affected by geomagnetic storms, as well. We essentially understand the effects of geomagnetic storms in the lower ionosphere, but there is a lack of mechanisms to explain correlations found deeper in the atmosphere, particularly in the troposphere. There seem to be two different groups of effects with possibly different mechanisms—those observed in the lower ionosphere, lower thermosphere and mesosphere, and those observed in the troposphere.  相似文献   

10.
In this study a comparison is made of the Utah State University Time-Dependent Ionospheric Model (TDIM) and an ionosonde data set from Argentine Islands. This study is unique in that the Argentine Islands data set of foF2 spans complete diurnal, seasonal and solar cycle conditions for low geomagnetic activity. The TDIM reproduces these foF2 variations extremely well. Although the observed winter and summer solstice foF2 diurnal curves have opposite phases, they are readily modelled. At equinox where a sharp transition occurs from winter to summer, or vice versa, the monthly average is complicated by this feature and hence the TDIM does not reproduce the diurnal fine structure.The neutral wind induced vertical plasma drift is the only free parameter in this study. All the other inputs are fixed for the specific solar, seasonal and diurnal conditions. A vertical plasma drift variation is presented; although simplistic, it couples the geographic and geomagnetic frames. With additional information such as hmF2, it would be possible to deduce a unique vertically induced drift pattern.  相似文献   

11.
The vertical wind component is frequently used to determine the zero-velocity baseline for measurements of thermospheric winds by Fabry-Perot and other interferometers. For many of the upper atmospheric emission lines from which Doppler shifts are determined, for example for the OI 630 nm emission, available laboratory sources are not convenient for long-term use at remote automatic observatories. Therefore, the assumption that the long-term average vertical wind is zero is frequently used to create a baseline from which the Doppler shifts corresponding with the line-of-sight wind from other observing directions can then be calculated. A data base consisting of 1242 nights of thermospheric wind measurements from Kiruna (68°N, 20°E), a high-latitude site, has been analysed. There are many interesting short-term fluctuations of the vertical wind which will be discussed in future papers. However, the mean vertical wind at Kiruna also has a systematic variation dependent on geomagnetic activity, season and solar cycle. This means that the assumption that the average value of the vertical wind is zero over the observing period cannot be used in isolation to determine the instrument reference or baseline. Despite this note of caution, even within the auroral oval, the assumption of a zero mean vertical wind can be used to derive a baseline which is probably valid within 5 ms−1 during periods of quiet geomagnetic activity (Kp < 2), near winter solstice. During other seasons, and during periods of elevated geomagnetic activity, a systematic error in excess of 10 ms−1 may occur.  相似文献   

12.
Average north polar currents for the winter season have been derived from geomagnetic hourly means at six levels of geomagnetic activity. The twin-vortex pattern, normally associated with more disturbed conditions, persisted even on the quietest (mean Ap ≈ 1) days. When Ap increased to 24, the Harang discontinuity appeared earlier by about 3.5 h, though the current system as a whole remained unchanged in orientation. The average quiet day seems to be associated with a weak IMF oriented northwards and towards the Sun, with a low solar wind velocity and low proton temperature.  相似文献   

13.
Data from a chain of seven ionosondes in the range of 56–38 N and 1–38° E geographic coordinates were analysed to illustrate the global and regional behaviour of the mid-latitude F-region for some selected geomagnetic storms that occurred during the solar cycle 21. It was found that there are different spatial scales in the response of the mid-latitude ionosphere to the disturbance in the magnetosphere-ionosphere thermosphere system. The physical mechanisms and processes are discussed in relation to the relevance of various theories in the understanding of the dynamics of ionospheric storms.  相似文献   

14.
For solar cycle 19 (1954–1964), the 12 monthly mean values of noon-time ƒoF2 at Ahmedabad (23°N, 73°E) show a large hysteresis effect when plotted against sunspot number or against geomagnetic Ap. However, a multiple regression analysis for the dependence of ƒoF2 on solar 2800 MHz flux and geomagnetic Ap, simultaneously, shows a better matching. Thus, long-term predictions need to take into account not just sunspot number but some solar index and geomagnetic index as two key parameters, simultaneously.  相似文献   

15.
The characteristics of 1–20 mHz (Pc5) geomagnetic pulsations recorded during the daytime on the ground at cusp and boundary layer latitudes have been examined. On quiet and moderately disturbed days the major spectral contributions are due to three different mechanisms. Sustained oscillations whose properties are consistent with the Kelvin-Helmholtz instability at the low latitude boundary layer are the dominant mechanism at −70 to −75 geomagnetic latitude. Transient irregular pulsations are frequently seen at single stations at the foot of polar cap and boundary layer field lines. Occasionally similar transients occur essentially simultaneously at widely spaced stations accompanied by absorption spikes on riometer records. The latter signals are most likely due to solar wind pressure pulses on the magnetopause. At cusp latitudes the major spectral contribution arises from sustained irregular pulsations centred on magnetic noon. Although their occurrence is related to the proximity of the cusp's particle signature, it may be more appropriate to discuss these signals in terms of fluctuations in boundary layer or mantle currents.  相似文献   

16.
Radio-wave absorption data from sixteen mid-latitude stations distributed in longitude, together with magnetic-field disturbance parameters and satellite measurements of thermal radiances, have been examined for the winter of 1976–1977. It has been demonstrated that D-region disturbances at mid-latitudes in winter can be associated with both the delayed effects of geomagnetic storms and with changes in mesospheric temperature.  相似文献   

17.
Saskatoon (52 N, 107 W) medium frequency (MF) radar data from 1979 to 1990 have been analyzed to investigate the solar activity effects on upper middle atmospheric winds and tidal amplitudes. The period of study covers two solar maxima and a solar minimum; the continuous data allow a systematic analysis of solar cycle dependence on mean winds and tides. The height region of 79–97 km sampled in the study shows an apparent but very weak dependence of mean winds and tidal amplitudes on solar activity variation. The observed features are fairly consistent with the early results reported by Sprenger and Schmindkr [(1969) J. atmos. terr. Phy. 31, 217). The mean zonal wind and the semidiurnal tidal amplitudes appear to exhibit positive and negative correlations with the solar activity, respectively; the statistical significances of these correlations are generally low. There is a biennial periodicity evident in the zonal wind oscillations but this docs not have a consistent phase relationship with the equatorial stratospheric wind oscillations (QBO). The meridional winds and the tidal amplitudes are characterized with different and quite irregular periods of oscillations (2–5 yr). The diurnal tidal variations over the solar cycle are small and irregular, although amplitudes are slightly larger during the solar minimum years.  相似文献   

18.
Equatorial 6300 Å arcs observed by the ISIS—II satellite close to the magnetic equator over the African and Asian zones are studied for night-time conditions from 21:00 h to 02:00 h local time in the summer and spring of 1972–1974 and 1976, respectively. Case studies of the arcs have been made for quiet geomagnetic conditions and for minor storms. Sometimes very intense arcs with intensities of 1–2 kR are observed. Arcs of moderate intensities (300–400 R) are observed during geomagnetically disturbed periods. It is confirmed that these intensities can be fully accounted for theoretically by the dissociative recombination of molecular oxygen ions. Since the emission intensities are found to be sensitive to the geomagnetic activity, the influence of the latter has been taken into account and discussed.Equatorial spread-F (ESF)/bubble conditions are usually present at these local times. The data presented here show a correlation between the 6300 Å emission rate at one of the anomaly crests, the gradient in h (the lowest scaled real height from topside ionosonde trace) and the existence of ESF and gravity waves. This correlation is consistent with the scenario put forward by Maruyama and Matuura that the occurrence of ESF requires a symmetrical electron density distribution around the magnetic equator, so that a transequatorial wind causes an asymmetry and inhibits the formation of ESF.For the ISIS data we conclude that where strong transequatorial winds exist the 6300 Å emission rate at one of the anomaly crests is very large and there is a steep gradient in h. When these winds are weak, the 6300 Å emission is low and the gradient in h is also small. In the latter case, gravity waves of wavelength 200–400 km were present as well, which suggests that ESF is promoted by the existence of gravity waves. However, the magnetic disturbance level was higher during these orbits, which offers another source of gravity waves.  相似文献   

19.
The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global ‘ring-current’ index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the ‘storm’ characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with remarkable accuracy from measurements made during the Dst growth phase. In the lognormal formulation, the mean, standard deviation and field count within standard deviation limits become definitive Dst storm parameters.  相似文献   

20.
A study has been designed specifically to investigate the dependence of the ionospheric response on the time of occurrence of sudden commencement (SC) and the intensity of the magnetic storms for a low- and a mid-latitude station by considering total electron content and peak electron density data for more than 60 SC-type geomagnetic storms. The nature of the response, whether positive or negative, is found to be determined largely by the local time of SC, although there is a local time shift of about six hours between low- and mid-latitudes. The time delays associated with the positive responses are low for daytime SCs and high for night-time SCs, whereas the opposite applies for negative responses. The time delays are significantly shorter for mid-latitudes than for low-latitudes and, at both latitudes, are inversely related to the intensity of the storm. There is a positive correlation between the intensity of the ionospheric response and that of the magnetic storm, the correlation being greater at mid-latitudes. The results are discussed in the light of the possible processes which might contribute to the storm-associated ionospheric variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号