首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observations of the mean wind flow and wave motions in the stratosphere at the South Pole are presented. The atmospheric motions are determined from the tracking of a high altitude, zero-pressure balloon launched from Amundsen-Scott Station during the austral summer of 1985–1986. The balloon position was precisely monitored by an optical theodolite for a large portion of the flight so that small scale motions could be resolved. The mean flow above the pole was approximately 3ms−1. Atmospheric motions characteristic of internal gravity waves were observed with an intrinsic period of approximately 4.5 h and vertical and horizontal wavelengths of approximately 2.5km and 125km, respectively. The horizontal perturbation velocity of the observed waves was large compared to the mean horizontal flow velocity. The implication is that wave motions play a dominant role in the transport of stratospheric constituents in regions where the mean winds are light, such as over the South Pole during austral summer.  相似文献   

2.
Earlier work which provided evidence for coupling between pressure variations in the stratosphere and lower ionosphere in winter has been extended. Day-to-day changes in the height of fixed electron density isopleths in the E-region at a middle latitude often exhibit quasi-oscillations with amplitudes between 2 and 10km and periods between 5 and 30 days. It is found that the correlation between these oscillations and corresponding variations in the height of winter isobaric surfaces in the stratosphere, resulting from the presence of planetary-scale waves, is sometimes good and sometimes poor. Examination of the type of wave disturbance in the stratosphere and of the stratospheric zonal wind profiles suggests that the conditions for stratosphere-ionosphere coupling are met only when well-defined planetary waves of increasing amplitude with height are seen in the lower stratosphere and when the stratospheric zonal wind pattern is favourable to the vertical propagation of such waves.  相似文献   

3.
A systematic method of deriving from MST radar data the group velocity and phase velocity of the atmospheric wave along the radar beam direction is proposed and verified by a series of numerical simulations. We apply the method to two data sets measured by Chung-Li radar under different background wind conditions. It is found that the vertical group velocity and phase velocity are mostly in the opposite direction when the background wind is weak. The energy source of downgoing wave packets was evidently related to the instability in the upper height range (10.5–11.7 km) where strong wind shear existed. When the background wind and wind shear are stronger, the vertical group and phase velocities may propagate in the same direction. We also found from numerical simulation and data analysis that the wave packet of gravity waves following power law spectrum are short-lived. A by-product of the group velocity measurement is that the horizontal wavelength may also be deduced from a vertical radar beam measurement from the dispersion relation if it is valid.  相似文献   

4.
We analyze 375 h of Na Wind/Temperature lidar measurements of the mesopause region (≈ 80–105 km) Na density and temperature profiles on 57 nights distributed over 2 yr at Urbana, Illinois. These observations yield a high-resolution seasonal data set of gravity wave activity in the upper mesosphere. From this data, we present measurements of the Brunt-Väisälä period, the relative atmospheric density perturbations and their spectra, and the parameters of 143 quasi-monochromatic gravity waves. The direct measurement of the Brunt-Väisälä period allows accurate calculation of the horizontal velocity perturbations and vertical displacement perturbations from the density measurements. The horizontal velocity and vertical displacement vertical wave number spectrum magnitudes and indices show considerable seasonal and nightly variability. The gravity wave amplitudes, wavelengths, and observed periods exhibit systematic relationships similar to those found in previous studies, and are consistent with the MU radar measurements of intrinsic gravity wave parameters. Here, we present a detailed analysis of the observations in terms of Diffusive-Filtering Theory models of gravity wave propagation. The magnitudes of the vertical wave number spectrum, the form of the joint vertical wave number and frequency spectrum, and the systematic relationships between the monochromatic gravity wave parameters are consistent with the Diffusive-Filtering model. We compare these results with a variety of radar, lidar, and airglow observations from other sites. This observational study suggests that the complex nonlinear interactions of the gravity wave field may be modeled successfully as a diffusive damping process, where the effective diffusivity is a function of the total wave variance.  相似文献   

5.
The Institute of Experimental Meteorology (U.S.S.R.) has carried out long-term continuous wind velocity measurements by the meteor radar method for the 80–100 km height region. From this experimental data the seasonal and latitudinal variations of atmospheric tides, as well as the spatial and temporal scales of tidal variability, have been determined.Atmospheric variations with a period of about half-a-day are investigated on the basis of a numerical model. A dependence between the mean wind structure and the semi-diurnal oscillation in the lower thermosphere is established. The influence of stratospheric warmings on semi-diurnal oscillations is also discussed. Numerical experiments show that the mean wind variations cannot explain the observed seasonal variations of a semi-diurnal tide.  相似文献   

6.
A discussion is given of gravity wave saturation and its relation to eddy diffusion in the middle atmosphere. Attention is focused on the saturation process and some of its observable manifestations. It does not serve as a review of all related work. Although a theoretical point of view is taken, the emphasis is on which wave parameters need be measured to predict quantitatively the influence of gravity waves on eddy transport. The following considerations are stressed: the variation of spectra with observation time T; that eddy diffusivities are determined by velocity spectra; the anisotropic nature of diffusivity; a unified approach to saturation; an attempt to make eddy diffusivity more precise; the relationship between eddy diffusivity and wave dissipation.The subjects of ‘wave drag’ (momentum flux deposition) and heat flux need only be treated briefly, because they are related to eddy diffusivity in simple ways. Consideration is also given to two different theoretical mechanisms of wave saturation—wave induced convective instability and strong nonlinear wave interactions. The saturation theory is then used to predict a globally averaged height profile of vertical diffusivity in the middle atmosphere. This calculation shows that gravity waves are a major contributor to eddy diffusion from heights of 40–110 km, and that they are significant down to 20 km. A more detailed calculation of wave induced eddy diffusion, including latitudinal and seasonal variations, can be made if wave velocity spectra become available. The paper closes with recommendations for future research.  相似文献   

7.
The Saskatoon MF radar operates continuously in the spaced antenna mode with 5 min resolution, primarily for horizontal wind analysis at mesospheric heights. Mean Doppler frequency and antenna-pair phase difference are available as byproducts. Clear oscillations are sometimes seen in the latter. Spectral analysis shows that these also occur in the Doppler and extend over a range of heights. The two cases shown are almost certainly perturbations in specular reflecting layers moving with horizontal velocity close to that of the wind. Downward phase propagation is apparent, and when the oscillations are present, the wind appears to be decelerating. The tentative explanation of a breaking gravity wave decelerating the mean flow is put forward, although the relations between frequency, and horizontal and vertical wavelengths, contradict linear gravity wave theory.  相似文献   

8.
We have simultaneously observed wind motions in the altitude range of 5–90 km by means of the MU radar, rocketsondes and radiosondes. Dominant vertical scales of wind fluctuations due to gravity waves were 2–5 km in the lower stratosphere, about 5–15 km in the upper stratosphere and longer than 15 km in the mesosphere. The increase in the vertical scale with altitude is interpreted in terms of the saturation of upward propagating gravity waves. In the stratosphere, the observed vertical wavenumber spectra showed smaller amplitudes and more gradual slopes than the model values. Furthermore, the wind velocity variance in the stratosphere increases exponentially with an e-folding height of about 9 km, implying that the gravity waves were not fully saturated. On the other hand, the spectra in the upper stratosphere and mesosphere agreed fairly well with the model spectra. The variance in the mesosphere seems to cease increase of the wave amplitudes and agrees reasonably well with the model value.  相似文献   

9.
Diurnal variations in the propagation direction of atmospheric gravity waves, and the travelling ionospheric disturbances to which they give rise, have been observed in many experimental observations and several modelling studies have demonstrated that this is primarily due to the corresponding diurnal rotation in the direction of the thermospheric wind. Other variations have been attributed to seasonal or other effects, but the effects of variations in the thermospheric temperature have not previously been analysed in detail. We present results from a study of the propagation of gravity waves through a layered atmosphere in which the thermospheric wind and temperature are derived from a three-dimensional time-dependent model. The analysis has been carried out for a range of wave speeds and periods, and for a range of times, seasons and propagation azimuths. Results suggest that a significant diurnal variation in the transmission coefficient for waves propagating through the thermosphere exists with seasonally dependent maxima. Transmission increases for increasing wave period up to about 50 min, after which it remains approximately constant. Maximum transmission occurs for wave phase speeds around 200–250 m/s and falls to zero for speeds less than about 100 m/s. An exception to this rule occurs for waves with periods less than 40 min and speeds less than 50 m/s for which significant transmission appears to be theoretically possible.  相似文献   

10.
This paper reviews some recent observations of gravity wave characteristics in the middle atmosphere, revealed by co-ordinated observations with the MU radar in Shigaraki (35°N, 136°E) and nearby rocketsonde experiments at Uchinoura (31°N, 131°E). We further summarize the results of comparative studies on the latitudinal variations of the gravity wave activity, which were detected by additionally employing data obtained with MF radars at Adelaide (35°S, 139°E) and Saskatoon (52, 107W) and lidar observations at Haute Provence (44, 6E).The seasonal variation of gravity wave activity detected with the MU radar in the lower stratosphere showed a clear annual variation with a maximum in winter, and coincided with that for the jet-stream intensity, indicating a close relation between the excitation of gravity waves and jet-stream activity at middle latitudes. The long-period (2–21 h) gravity waves seemed to be excited near the ground, presumably due to the interaction of flow with topography, and the short-period (5 min 2 h) components had the largest kinetic energy around the peak of jet-stream.We found an increase with height in the vertical scales of dominant gravity waves, which can be explained in terms of a saturation of upward propagating gravity waves. The values of the horizontal wind velocity variance generally increased in the stratosphere and lower mesosphere, but they became fairly constant above about 65 km due to the wave saturation, resulting in the active production of turbulent layers.Although the gravity wave energy showed an annual variation in the lower atmosphere, it exhibited a semiannual variation in the mesosphere, with a large peak in summer and a minor enhancement in winter. Lidar observations reasonably interpolated the seasonal variations in the intermediate height regions.The gravity wave energy in the mesosphere, with periods less than about 2 h, was consistently larger in summer than in winter at all the stations, i.e. at 35N, 44N,52 N and 35 S. However, the values were generally larger at 35 N than at 52 N. which was found from a comparison of l-yr observations at Shigaraki and Saskatoon. Furthermore, a comparison between Shigaraki and Adelaide, located at the conjugate points relative to the equator, revealed that the gravity-wave energy in the mesosphere was found to be fairly similar, when we compared the values in summer/winter in each hemisphere.  相似文献   

11.
A significant increase and subsequent variations of stratospheric aerosols caused by the eruption of Mt.St. Helens on 18 May 1980 have been observed using a Yag lidar at a wavelength of 1.06 μm for a period of one year at Fukuoka, Japan. The time variation of aerosols is compared with numerical results of two-dimensional model calculations, which show longer decay times, especially for column concentrations of aerosols.In the upper layer, transported by the easterly wind during summer, the effective vertical diffusion is quite small and this is explained,at least partly, by the influence of vertical shear of the easterly wind, which balances vertical eddy diffusion.Finally, it is suggested that the settling of giant particles might increase the precipitation near the Baiu front over Japan for July and August.  相似文献   

12.
Hydroxyl (OH) rotational temperatures near 85 km altitude have been monitored at Calgary, Alberta, Canada (51°N, 114°W) since 1981 with the objective of determining velocities, wavelengths and periods associated with moving temperature structures. A technique is described whereby the velocity of moving patterns in two dimensional data sets can be accurately determined and used as a parameter for a global smoothing algorithm. Velocities of the structures in the meridional direction were found to be directed poleward. Corresponding Doppler bulk wind velocities measured near the 95 km height region were directed equatorward indicating the presence of filtering of internal gravity waves by the background wind. Two coherent wave structures were often observed simultaneously during a night. The smaller of the two structures had true wavelengths less than 15–30 km and may be related to billow clouds often reported in noctilucent cloud observations. The second wave has a period on the order of an hour and meridional wavelengths ranging from 100 to 2000 km.  相似文献   

13.
We present mesospheric backscattered VHF echo power and wind velocity data indicating the co-existence of a threefold strongly echoing layer and a wave motion, observed on 20 September 1985 with the MU radar at Shigaraki (34.9°N, 136.1°E), Japan. The echoing layers are clearly connected with the vertical and horizontal wind perturbations due to the wave. The analysis of the wind data have shown that the wave motion is due to an internal inertia-gravity wave with the vertical and horizontal wavelengths of 6 and 400 km, respectively, and period of 5.6 h. Evaluating the atmospheric stability in the wave field with the estimated wave parameters, the echoing layers are shown to be consistent with statically stable regions generated by the wave. It is suggested from our results that Fresnel scattering is a dominant echoing mechanism for a VHF radar beam in the mesosphere, as well as in the lower stratosphere.  相似文献   

14.
One of the important scientific objectives of the international DYANA campaign was to obtain the characteristics of planetary scale waves in the low-latitude middle atmosphere. India participated in this campaign by way of launching several rockets and high-altitude balloons from a number of locations to determine the vertical structure of different wave modes present during January–March 1990. Rocket launchings were conducted from two stations, namely Thumba (8.5°N, 77.0°E) with M-100 rockets and Balasore (21.5°N, 87.0°E) with RH-200 rockets, while balloons were launched from three stations, i.e. Trivandrum near Thumba, Minicoy (8.2°N, 73.0° E) and Port Blair (11.7°N, 92.7°E). In addition, there were balloon flights from Hyderabad (17.3°N, 78.3°E) and Bhubaneshwar (20.2°N, 85.5°E). The results of the synoptic scale wave activity as obtained from various data sources are given here.Three prominent peaks with wave periods near 6–8 days (short periods), 10–12 days (medium periods) and 30–45 days (long periods) are found to occur at all the stations. The medium- and long-period waves appear to be forced Rossby modes penetrating from midlatitudes while short period waves all have characteristics matching those of mixed Rossby-gravity waves. A very interesting result is the presence of long-period oscillations in the upper stratosphere and mesosphere, with very large amplitude, contrary to earlier observations.  相似文献   

15.
The wind field of the upper mesosphere and lower thermosphere region (85–105 km) over Central Europe (52°N, 15°E) has been continually and reliably recorded by regular daily D1 radio wind measurements in the LF range (177, 225 and 270 kHz) using commercial radio transmitters. These measurements show the prevailing winds, the tidal wind components and the effects of internal gravity waves, as well as the seasonal and irregular variations of these parameters. The height of the wind measurements is determined by measuring the travel time differences between corresponding modulation bursts in the sky wave and in the ground wave. Using a quasi-online calculation procedure, the results are available immediately. Therefore they are useful for monitoring the upper atmospheric circulation with regard to upper atmosphere meteorology in the future. Vertical profiles of the wind field parameters can be derived with the aid of the combined wind and height measurements. Height-time cross-sections of the monthly mean prevailing winds and semidiurnal wind components have been calculated almost continuously for the last 10 years. The present paper deals with recent results for the year 1991.  相似文献   

16.
A large set of temperature profiles has been obtained in the upper stratosphere and the mesosphere over Europe during the MAP/WINE compaign by the use of different techniques: datasondes and falling spheres launched by metrockets, ground-based OH spectrometers and a Rayleigh lidar. These data have been used to study the large scale variability of the middle atmosphere during the winter 1983–1984. The temperature variations with periods longer than 25 days are clearly related to the succession of minor upper stratospheric warmings observed during this winter. The variations in the period range 10–20 days are at least partially due to westward propagating Rossby waves, of which one mode, with a 12.5 days period, is tentatively identified as the second symmetric mode of the wave number 2.  相似文献   

17.
An attempt is made at the statistical analysis of small-scale disturbances in the stratosphere and mesosphere with the aid of meteorological rocket observations at many stations from 77°N to 8°S for several years.By applying a high-pass filter to daily rocket data in the height range 20–65 km, wind and temperature fluctuations with characteristic vertical scales close to or less than 10 km are obtained, which are considered to be due to internal gravity waves. Results are expressed in terms of parameters which tend to emphasize smallscale vertical fluctuations and which should provide qualitative measures of gravity wave activity.It is found that the gravity wave activity shows a notable annual cycle in higher latitudes with the maximum in wintertime, while it shows a semiannual cycle in lower latitudes with the maxima around equinoxes. It is also found from the standard deviation around the monthly mean that the temporal variability of gravity waves is very large.  相似文献   

18.
Simultaneous measurements of the 015 57.7 nm, O2 atmospheric (0,1) band, NaD and OH (9,4) band emissions obtained during the period October November 1989 at Cachoeira Paulista (23°S, 45°W), Brazil, have been analysed to study gravity waves in the mesospheric region at a low-latitude station in the southern hemisphere. It was found that, when these emissions showed large temporal intensity variations, there were also short period quasi-coherent temporal variations superposed on them, suggesting a possible passage of internal gravity waves in the emission layers. Cross-correlation analysis indicates that the time lag between the different emissions is smaller for short period variations compared with the long period variations. The wave parameters, namely a vertical wavelength of 12 km, a horizontal derived wavelength of 200 km with a period of 80 min, estimated from one of the observed short-period coherent oscillations, are typical of the internal gravity waves at the airglow emission height.  相似文献   

19.
The vertical drift velocity of the F-region in the post-sunset period at the magnetic equatorial station Trivandrum has been studied using a HF phase path sounder. The study revealed the presence of quasi-periodic fluctuations with periods in the range 4 30 min superposed on a steady vertical motion as a regular feature of the equatorial F-region in the post-sunset period. The fluctuations in the vertical velocity arc attributed to the east west electric field fluctuations generated by internal atmospheric gravity waves. The vertical velocity fluctuations can provide the necessary seed perturbations for the growth of equatorial spread-F irregularities.  相似文献   

20.
Observations made on 10 July 1987 with the EISCAT UHF radar are presented. The F-region measurements of both electron density and field-aligned ion velocity show that an upward propagating gravity wave with a period of about 1 h is present. The origin of the gravity wave is probably auroral. The E-region ion velocities show a tidal wave and both upward and downward propagating gravity waves. The gravity waves have three dominant periods with a possible harmonic relationship and similar vertical wavelengths. These waves are either reflected at a single reflection level, ducted between two levels, or they are generated in a non-linear interaction between gravity and tidal waves. The E-region electron density is dominated by particle precipitation. After a short burst of more intense precipitation, a sporadic E-layer forms at 105km and then disappears 40min later. Within this time, the layer rises and falls by a few kilometres, following closely the motion of a convergent null in the velocity profile. We suggest that the formation and destruction of this layer is controlled by both the precipitation, which indirectly provides a source of metal ions through charge exchange, and the superposition of gravity waves and the tidal wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号