首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coordinated experiment involving scintillation observations using orbital satellite beacons and CP-3-F program measurements by means of the EISCAT ionospheric radar facility is described. The results reveal the location of patches, containing kilometre-scale irregularities, in the vicinity of a region of an electron density minimum and an electron temperature increase. In the daytime under quiet geomagnetic conditions, the region of scintillations coincided closely with the southwards gradient in electron density, while a plasma drift velocity was mainly westwards VE-W ≲ 0.3 km/s. In the evening, the region of the most intense irregularities was transformed to the northwards sense of the electron density gradient simultaneously with the plasma drift velocity reverse and the arrival of a significant southwards component VN-S ≲ (1.5−1.0) km/s. EISCAT data demonstrated the patches' location in regions of an electron temperature increase. Processes operating to create kilometer-scale irregularities were analysed and estimated according to the data obtained. The assessments suggest that irregularities with a cross-field scale, equal to or greater than 1 km, and a field-aligned scale, equal to or greater than 30 km, were the result of growth of the thermomagnetic instability.  相似文献   

2.
Slant-F traces on ionograms recorded by a modern ionosonde in a sunspot-minimum period have revealed the existence of field-aligned irregularities at times of spread-F occurrence. This appears to be the first investigation in a mid-latitude region around 36° (geomagnetic) to detect these irregularities at F2-region heights using an ionosonde. Although such traces were observed frequently near sunspot minimum they were seldom recorded for periods close to sunspot maximum. Also, for a specific spread-F event in August 1989, both the ionograms from the modern ionosonde and scintillations of 150 MHz transmissions from a Transit satellite indicate the existence in the ionosphere of periodic structures (period around 11 min). The scintillation recording also included rapidly fading signals indicative of small-scale structures. The satellite had a path close to the magnetic meridian which passed through the recording station (Brisbane, Australia). Because of the enhanced signal fluctuations in the scintillation recording on this occasion it seems likely (with the support of other evidence on the ionograms) that the small-scale structures present were field-aligned.  相似文献   

3.
RH-560 rockets instrumented with Langmuir probes were launched from SHAR, India (dip 11°N) for in-situ studies of electron density irregularities associated with equatorial spread-F (ESF) when the F-region plasma was drifting down and strong range spread-F was observed with an ionosonde at SHAR. A high variability was observed in the steepness of the base of the F-region. The bases were found to be steeper during the periods when the F-region plasma was drifting down. On one of the flights irregularities were observed in the region around 280 km where the gradients in electron density were downwards, indicating that the gradient drift instability is the main mechanism for their generation. Assuming a power law of the type Pkkn for irregularities of transitional scale (20–200 m), it was found that the spectral index n ranges between −1.5 and −4.6, when the mean integrated spectral power PT of the irregularities in the above scale size range varied from −45 to −12 db. A relationship between n and PT was observed and can be represented by a Gaussian function using the above expression; the altitude variation of n normalized for a PT value of −10 db showed that the nature of spectral index remains the same between 230 km and the apogee of the rocket. This is at variance with the observations of Kelley et al. [(1982), J. geophys. Res. 87, 1575] that 280 km is the threshold altitude for the steep drift wave type of spectra to a shallower spectra.  相似文献   

4.
The second moment of the complex amplitude or the mutual coherence function (MCF) for transionospheric VHF radio waves transmitted from the geostationary satellite ATS-6 is computed from daytime amplitude and phase scintillations recorded at an equatorial station, in order to study the structure of electrojet irregularities. The shape of the correlation function for fluctuations in the integrated electron content along the signal path is deduced by using a theoretical relationship between this correlation function and the MCF which is based on the assumption that the irregularities are “frozen”. Further, using a power-law spectrum to describe the electrojet irregularities, the outerscale lo associated with the spectrum as well as the r.m.s. density fluctuation are estimated from theoretical fits to the computed values. The irregularity drift speeds Vo transverse to the signal path, for the scintillation events studied here, are derived from power spectra of weak scintillations. On the basis of a relationship between lo and Vo suggested by a linear theory of the gradient-drift instability, the effective Hall conductivity is estimated to be about five times the effective Pedersen conductivity in the electrojet region.  相似文献   

5.
From VHF backscatter radar measurements at Thumba (dip: 56′S) of the phase velocities of type II irregularities in the equatorial electrojet (EEJ), electric field (Ey) values are estimated for different times of the day. Using the electric field values thus deduced and the Pedersen and Hall conductivities calculated using model values of electron densities and the collision frequencies of ions and electrons, the height integrated current intensity in the EEJ is estimated. The surface level geomagnetic field perturbation ΔH produced by this ionospheric current is then calculated. The calculated values of ΔH are compared with observed values of ΔH (after subtracting the magnetospheric contribution of Dst) for a number of days. The comparisons show good agreement between observed ΔH values and those calculated from measured electric fields. The agreement is found to be good even when type I irregularities are present at higher altitudes in the EEJ. This comparative study demonstrates the validity of estimating electric field values from VHF radar measurements and it indicates the possibility of deducing electric field values from ground level ΔH values, at least for statistical studies.  相似文献   

6.
7.
The response of the equatorial night-time F-region to magnetic stormtime disturbances has been examined using mainly ionograms recorded at Trivandrum and magnetograms recorded at high, middle and low latitudes during the magnetic storm of 23–26 November 1986. The analysis revealed a close coupling between the equatorial F-region and high latitude magnetic field disturbances originating in solar wind-magnetosphere interactions. The presence of spread-F on ionograms during this period is found to be consistent with the Rayleigh-Taylor instability mechanism for the growth of the irregularities.  相似文献   

8.
Using the measured Doppler spectra of the VHF backscatter radar signals from type II ionization irregularities in the equatorial electrojet (EEJ) at Thumba (dip. 56′S), the height profiles of the phase velocity Vp of the plasma waves in the EEJ are determined. It is shown that the east-west electrostatic field Ey in the EEJ can be deduced from the experimental height profiles of Vp using an appropriate model of ion and electron collision frequencies. The theoretical basis and the practical application of the method for deducing Ey are described. The usefulness of the method even when type I irregularities are present at the higher altitudes of the EEJ is demonstrated.It is shown that the collision frequencies of ions and electrons are likely to have a significant diurnal variation, which may be caused by diurnal variations of the neutral densities and temperatures in the E-region.  相似文献   

9.
The STARE and SABRE auroral radars use double pulses to measure one value of the autocorrelation function (ACF) to obtain the Doppler velocity of the irregularities in the E-region auroral zone. If the pulse separation of each double pulse is τ, then the measured velocity tends towards the mean velocity VDP as τ → 0, and towards the velocity of the long-lived irregularities VLL as τ → ∞. A practical implementation using these results is presented, which allows measurement of these two physically important velocities from just four pulse spacings, rather than the 11 or 15 currently used to obtain the full velocity spectrum in the STARE and SABRE radars, and thus gains greater precision or better time resolution. The two line-of-sight velocities, VDP and VLL, are in general not equal, with VLL greater in magnitude than VDP (sometimes much greater). Comparison of VDP and VLL for the two STARE stations and one of the SABRE stations shows interesting differences, and a number of statistically significant features. VLL probably measures the velocity of primary irregularities whenever these exist with the appropriate k vector. Both velocities ought to be measured routinely, and also for comparison with other techniques.  相似文献   

10.
Scintillation data from near Boston, U.S.A., and spread-F data from Argentine Islands, Antarctica are used to investigate the diurnal and seasonal variations of the simultaneous occurrence of medium-scale (~ 1–10 km) irregularities in the electron concentration in the F-region of the ionosphere at conjugate magnetic mid-latitude regions. It is found that these two stations near 52° CGL observe similar irregularity occurrence on ~75% of occasions at night when the data are considered on an hour by hour basis. During solstices, the relationship is dominated by occasions when irregularities are absent from both ends of the geomagnetic field lines; however, at equinoxes, periods of the simultaneous occurrence and non-occurrence of irregularities are approximately equally frequent. During periods of high geomagnetic activity, processes associated with the convection electric field and particle precipitation are likely to be important for the formation and transport of irregularities over these higher mid-latitude observatories. These processes are likely to occur simultaneously in conjugate regions. On days following geomagnetic activity, two processes may be operating that enhance the probability of the temperature-gradient instability, and hence lead to the formation of irregularities. These are the presence of stable auroral red arcs which occur simultaneously in conjugate locations, and the negative F-region storm effects whereby latitudinal plasma concentration gradients are increased; these effects are only similar in conjugate regions. During very quiet geomagnetic periods, F-region irregularities are occasionally observed, but seldom simultaneously at the two ends of the field lines. There is also an anomalous peak in the occurrence of irregularities over Argentine Islands associated with local sunrise in winter. No explanation is offered for these observations. Photo-electrons from the conjugate hemisphere appear to have no effect on irregularity occurrence.  相似文献   

11.
Small scale sub-auroral F-region irregularities were observed on 6–7 February 1984 by the two HF radars of the EDIA experiment while the EISCAT UHF system was scanning the ionosphere between 57° and 66° invariant latitude at a slightly different longitude. The bistatic EDIA system was mainly designed to detect the F-region irregularities at sub-auroral latitudes and to measure their perpendicular velocities. This paper is devoted to an examination of the morphology of the irregularity regions detected by the HF radars and of their production mechanisms, by comparison with the horizontal and vertical electron density profiles measured by EISCAT. It is shown that decametric irregularities observed at about 360–430 km height are not associated with any large scale horizontal density gradients in the F-region (350km). However, a strong north-south gradient observed at lower altitudes (150–200km), which is likely to indicate the southern boundary of the high energy particle precipitation zone, is well correlated with the strong scattering regions observed by the HF radars. The EISCAT electron temperature measurements at 350km height also show horizontal gradients which are well correlated with the small scale F-region irregularities. We discuss implications of these observations on the mechanisms of production of irregularities in the sub-auroral F-region.  相似文献   

12.
Results are presented from a coordinated experiment involving scintillation observations using transmissions from NNSS satellites and simultaneous measurements with the EISCAT ionospheric radar facility. The scintillation was used to indicate the presence of sub-kilometre scale irregularities while the radar yielded information on the larger structures in the background ionosphere. Two examples are discussed in which localised patches of scintillation were observed at L-shells near ‘blob’ like enhancements in F-region ionisation density. Elevated electron temperatures indicated that the enhancements may have had their origins in soft particle precipitation. While structuring of the precipitation on the 100 m scale cannot be completely ruled out as a source of the irregularities, in one case the blob gradient can be shown to be stable to the E λ B mechanism. The most likely cause of the irregularities appears to be shearing of the high velocity plasma flow in a region adjacent to the density enhancement. This region is characterised by a high ion temperature while the resulting scintillation has a shallow spectral slope.  相似文献   

13.
Radio astronomical interferometric observations are affected by atmospheric refraction, being particularly sensitive to inhomogeneities in the atmosphere. At frequencies below 2 GHz the influences of the ionosphere are significant in radio astronomy, especially for single dish observations and for connected element interferometry.Analytical expressions for the manifestations of weak ionospheric scintillation in radio interferometric observations, are derived. We indicate which ionospheric scintillation parameters can be derived from radio interferometric measurements. It is shown that the baseline dependence of the observed amplitude scintillation index implies a direct determination of the height of the region of random irregular electron distribution. Furthermore, the linear scale of the irregularities causing scintillation can be determined directly from the baseline dependence of the scintillation index S4. From the mean square phase fluctuations as a function of interferometer baseline, the spatial scale of the irregularities responsible for this effect can also be determined. From a comparison with observational mid-latitude data we find indications that scintillation irregularities occur in the lower parts of the F2-layer. The spatial scale of irregularities causing amplitude scintillation is of the order of about 25 to about 500 metres. Phase scintillations are caused by irregularities with dimensions which are an order of magnitude larger.  相似文献   

14.
Using the Doppler spectra of VHF radar signals, the height profiles of the phase velocity (Vp) of 2.7 m irregularities in the equatorial electrojet (EEJ) over Thumba (dip: 56′S) are obtained. The day-time east-west electric fields (Ey) are deduced by matching experimentally observed Vp profiles with theoretically deduced ones for a number of quiet and disturbed days. The experimental Ey values show: (i) a large day-to-day variability; (ii) a large decrease in the afternoon hours on some days (quiet and disturbed); (iii) the frequent presence of short period fluctuations with amplitudes of 30–50% of the background value and with typical time scales of 30–60 min, on moderately disturbed days (9 ⩽ Ap ⩽ 30); (iv) a significant decrease of the average Ey on disturbed days compared to that on quiet days during 0900–1200 h L.T.  相似文献   

15.
When transmitting on 5.8 MHz the Bribie Island HF radar array synthesizes a beam that is 2.5 wide. The beam can be steered rapidly across the sky or left to dwell in any direction to observe the fading rates of echoes within a small cone of angles. With the beam held stationary, the time scale associated with deep fading of F-region echoes is usually more than 5 min. This is consistent with the focusing and defocusing effects caused by the passage of ever-present medium-scale travelling ionospheric disturbances (TIDs). On occasion the time scale for deep fading is much shorter, of the order of tens of seconds or less, and this is thought to be due to the interference of many echoes from within the beam of the radar. It is shown that the echoes are not due to scatter from fine structure in the F-region, but rather due to the creation of multiple F-region paths with differing phase lengths by small, refracting irregularities in underlying, transparent spread sporadic-E, (Spread-Es). The natural drift of the Spread-Es causes the phase paths of the different echoes to change in different ways causing the interference.Two methods are used to investigate the rapidly fading F-region signals. Doppler sorting of the refracted F-region signal does not resolve echoes in angle of arrival suggesting that many echoes exist within a Fresnel zone [Whitehead and Monro (1975), J. atmos. terr. Phys. 37, 1427]. Statistical analysis of F-region amplitude data indicates that when the range spread in Es is severe on ionograms, then a modified Rayleigh distribution caused by the combination of 10 or so echoes is most appropriate. Using knowledge of the refracting process the scale of Es structure is deduced from these results. Both methods find a Spread-Es irregularity size of the order of 1 km or less. It is proposed that the Rayleigh type F-region signals seen by Jacobsonet al. [(1991b), J. atmos. terr. Phys. 53, 63] are F-region signals refracted by spread-Es.  相似文献   

16.
Measurements of zonal irregularity drifts were made by the spaced receiver scintillation and radar interferometer techniques from Huancayo and Jicamarca, respectively. The Fabry-Perot Interferometer operated at Arequipa provided the zonal neutral winds. These simultaneous measurements were performed during evening hours in the presence of equatorial spread-F on three nights in October 1988. The zonal drift of 3-m irregularities obtained with the 50-MHz radar showed considerable variation as a function of altitude. The drift of hundreds of m-scale irregularities obtained by the scintillation technique agreed with the drift of 3-m irregularities when the latter were measured near the F-peak. The neutral winds, on the other hand, sometimes exceeded the irregularity drifts by a factor of two. This is a possible result of the partial reduction of the vertical polarization electric field in the F-region caused by the effects of integrated Pedersen conductivity of the off-equatorial night-time E-region coupled to the F-region at high altitudes above the magnetic equator.  相似文献   

17.
On 8 May 1986, between 1113 and 1600 UT, an isolated magnetospheric substorm was observed, during which the AE-index exceeded 700 nT (CDAW 9E event). Three available sets of measurements (a) of the solar-wind parameters (IMP-8 satellite), (b) of the magnetotail energy flux (ISEE-1 spacecraft), and (c) of ground magnetic observatories, allowed us to make a detailed study of the overall magnetospheric response to changes of the interplanetary magnetic field (IMF) direction, during this event of weak solar-wind coupling.In order to study the mechanisms and time-delays of the magnetospheric response to the abrupt increase of the solar-wind energy input, we have evaluated the total magnetospheric energy output UT following two different methods: (a) Akasofu's method, taking the ring current decay time τR constant, and (b) Vasyliunas' method where the values of ut are independent of the solar-wind energy input as determined from the epsilon parameter. Both methods suggest that the driven system has been considerably developed during this substorm, while an unloading event has been superposed at the expansion onset.  相似文献   

18.
The Bribie Island HF radar array (27°S, 153° E) can be set up to make angle of arrival and Doppler shift measurements throughout the range of spread-Es, layers. Results of this experiment show that the range spread seen on ionograms is not due to multiple reflection with varying obliquity, but rather a genuine height spread exists. Where velocity measurements can be reliably made, reflector velocity appears to be a slowly varying function of height. Spread-Es, can be blanketing or non-blanketing, sequential or non-sequential and at first impression it seems that the chief difference between spread-Es, and normal Es, is a small scale, partially transparent structure in lower regions that allows higher regions to be observed. It is suggested that on occasion spread-Es, irregularities are further modulated by the passage of gravity waves.  相似文献   

19.
The mechanisms of formation of atmospheric irregularities (AI) by the solar terminator (ST) have been considered. All of these mechanisms are divided into two classes, linear or nonlinear, according to the mechanism of AI generation. All mechanisms determined by a moving step of some atmospheric parameter (pressure, temperature, and so on) belong to linear mechanisms for wave excitation. Mechanisms determined by instabilities in the atmosphere inside the ST region are nonlinear mechanisms. Examples are the gradient-radiatioe instability (GRI), which arises from the vertically inhomogeneous absorption of solar radiation, turbulence arising in the ST region, and the plasma instability in the evening hours caused by the increase of the electron pressure gradient inside the ST region.  相似文献   

20.
This paper presents simulated ionograms calculated for a parabolic ionospheric layer containing irregularities in the form of small amplitude waves. With small amplitudes, perturbation techniques can be used enabling results for the irregular ionospheres to be calculated from the results for smooth ionospheres. This approach is relatively straightforward and avoids having to ray trace new paths each time the irregularity parameters are changed. It is, however, restricted to irregularities which do not cause multiple echoes. Irregularities with vertical wavelengths of up to a few kilometres can produce significant changes in the ionosphere over height intervals smaller than those involved in reflecting a single pulse. Consequently, in the simulation procedure, it is essential to consider not just the carrier frequency but the complete frequency spectrum of the pulse. Irregularities with vertical wavelengths of the order of 10 km or more can produce ripples in an ionogram trace. These will, of course, be more evident on ionograms with high frequency resolution. Irregularities with vertical wavelengths of up to several kilometres and amplitudes up to a few per cent can produce significant pulse spreading and splitting. The actual effects depend not just on the irregularity properties but also on the ionosonde pulse width, gain and frequency and height resolutions. Some simulations show trace splitting and quasi-horizontal traces similar in many respects to effects observed by Bowman (1987, J. atmos. terr. Phys. 49, 1007) and Bowmanet al. (1988, J. atmos. terr. Phys. 50, 797). Consequently it is suggested that, at least in some cases, small amplitude (≤3%) and small scale (≤4 km) irregularities produce the spread-ifF reported by these authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号