首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include
  • 1.(1) flux transfer events at the dayside magnetopause,
  • 2.(2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere,
  • 3.(3) the response of the magnetopause to the solar wind dynamic pressure pulses and
  • 4.(4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.
  相似文献   

2.
An attempt is made to reconcile two competing views as to where the auroral distribution maps from in the magnetosphere. The structure of the aurora is shown to have two distinctive parts which vary according to the magnetic activity. The low latitude portion of the structured distribution may be a near-Earth central plasma sheet phenomenon while the high latitude portion is linked more closely to boundary layer processes. During quiet times, the polar arcs may be the ionospheric signature of a source region in the deep tail low latitude boundary layer/cool plasma sheet. The structured portion of the ‘oval’ has a dominantly near-Earth nightside source and corresponds to an overlap region between isotropic 1–10 keV electrons and 0.1–1 keV structured electrons. The ionospheric local time sector between 13 and 18 MLT is the meeting point between the dayside boundary layer source region and this near-Earth nightside source. Late in the substorm expansion phase and/or start of the substorm recovery phase, the nightside magnetospheric boundaries (both the low latitude and Plasma Sheet Boundary Layers) begin to play an increasingly important role, resulting in an auroral distribution specific to the substorm recovery phase. These auroral observations provide a means of inferring important information concerning magnetospheric topology.  相似文献   

3.
The morphology of precipitating particles, measured at low altitude in the polar regions, varies systematically with the strength and direction of IMF Bz and with solar wind speed Vsw. We use particle data taken onboard the DMSP satellites to determine these variations. Both individual satellite passes during the storm/quieting period of 26 and 27 August 1990, and statistical maps compiled from a data base over 4.5 yr are presented. We focus attention on those magnetospheric populations that have magnetosheath characteristics, the boundary populations. We show that the precipitating ion boundary population, whose down-coming spectra can be fitted to streaming Maxwellians, expands from a region confined near the dayside cusp for southward IMF, to a thick, annular region, including the dayside cusp, for northward IMF. The expansion in local time is inhibited by increasing solar wind speed. Boundary electrons behave somewhat differently. They have easier access to the polar regions and their variations have shorter spatial/temporal scale lengths than the boundary ions. For strongly northward IMF, intense, agitated boundary electrons can be found over all or part of the polar cap. Broad regions (up to ~ 100 km) of strongly accelerated electrons (several keV) that produce visible arcs are embedded in this population. Two features of the ion boundary population help identify its source. (1) The spectra of the boundary ions expanding into the polar cap exhibit field-aligned streaming, which, downtail, is toward the Earth. (2) The region into which the boundary ions expand best maps magnetically to a dawn-dusk cut across the neutral sheet, rather than to the low-latitude boundary layer. Therefore, we conclude that the immediate source for boundary ions in the polar regions during northward IMF is the plasma sheet boundary layer. These ions reach tail lobe field lines by convection whose direction when mapped to the ionosphere is sunward. Significant change in the topology of the magnetospheric magnetic field, and, in particular, the closing of high-latitude field lines, is not required to explain the data.  相似文献   

4.
The ionospheric location of substorm onset is generally found to be at the most equatorward arc in the poleward portion of the diffuse aurora. The observation that most activity occurs in this region provides a reference from which the source region in the magnetotail may be assessed. This reference can be examined in two ways. First, magnetic field mappings of these onset locations to the equatorial plane suggest that the onset is associated with processes quite near the Earth. For example, for 14 cases the average GSM X value was found to be ≈ −7.8 RE. However, this identification is based on a static magnetic field model and while these results are consistent with some earlier findings there is not sufficient confidence in this technique to discriminate between topological regions in the magnetotail. A second way to examine the ionospheric onset location is in relation to the open/closed field line boundary. It is evident from Viking satellite images that optical substorm expansions can occur well equatorward of the poleward extent of emissions, both during quiet and active periods. There is no reason to suspect that this poleward region of emissions is not on closed field lines and that the onset location is therefore unrelated to the open/closed field line boundary, a result consistent with some (but not all) near-Earth mechanisms but only under some conditions with the distant tail boundary layer theory.  相似文献   

5.
In order to investigate the particles which produce the polar cap aurora at the Vostok station in Antarctica, charged particle data obtained by the DMSP satellites for some days in a period from April to August 1985 were surveyed. Due to the satellite orbit the local time range in which the data were available was the morning sector. For all the events when sun-aligned arcs were observed on the ground the simultaneous DMSP measurements on almost the same field line showed an increased integral number flux J. > 108 (cm8/s/sr)−1 of the precipitating electrons with energy Ee > 200 eV. The electron spectra with double peaks are typical of intense electron precipitation in the polar cap arcs. The most noticeable feature of ion spectra in the polar cap arcs is the prominent minimum in ion flux in the energy range 0.1 < Ei < 1 keV in contrast with the oval precipitation ; this feature gives the possibility to separate the polar arcs from the aurora in the oval. In some events the satellite crossed the system of two widely separated arcs ; one of them was a sun-aligned arc whereas the other was circular at constant latitude according to the Vostok data. The analysis of the DMSP electron and ion precipitation data has shown that in these events the latitude-oriented arcs are located in the polar cap and not in the auroral oval.  相似文献   

6.
A procedure is established to evaluate the Balmer excitation rates of Hα and Hβ to produce the corresponding volume emission rates versus height, using semi-empirical range relations of protons in air. The calculations are carried out with identified ion-energy particle spectra of the dayside aurora obtained by low altitude satellites. The calculated emission intensities of Hα and Hβ indicate that they are indeed observable by ground-based optical detection. Measurements of the dayside aurora from Nordlysstasjonen in Adventdalen, Svalbard, are discussed in relation to these calculations. Periodic bursts of auroral Hα and Hβ emissions are observed in the dayside aurora by ground-based photometers and spectrometers. The mean period between proton events is found to be 10 min on average. Furthermore, it is found that when the time between successive bursts decreases, the emission ratio of Hα and Hβ fluctuates indicating a step-like behaviour in the primary initial proton energy.  相似文献   

7.
A polar map of the occurrence rate of broad-band auroral VLF hiss in the topside ionosphere was made by a criterion of simultaneous intensity increases more than 5 dB above the quiet level at 5, 8, 16 and 20 kHz bands, using narrow-band intensity data processed from VLF electric field (50 Hz–30 kHz) tapes of 347 ISIS passes received at Syowa Station, Antarctica, between June 1976 and January 1983.The low-latitude contour of occurrence rate of 0.3 is approximately symmetric with respect to the 10–22 MLT (geomagnetic local time) meridian. It lies at 74° around 10 MLT, and extends down to 67° around 22 MLT. The high-latitude contour of 0.3 lies at invariant latitude of about 82° for all geomagnetic local times. The polar occurrence map of broad-band auroral VLF hiss is qualitatively similar to that of inverted-V electron precipitation observed by Atmospheric Explorer.(AE-D) (Huffman and Lin, 1981, American Geophys. Union, Geophysics Monograph, No. 25, p. 80), especially concerning the low-latitude boundary and axial symmetry of the 10–22 h MLT meridian.The frequency range of the broad-band auroral VLF hiss is discussed in terms of whistler Aode Cerenkov radiation by inverted-V electrons (1–30 keV) precipitated from the boundary plasma sheet. High-frequency components, above 12 kHz of whistler mode Cerenkov radiation from inverted-V electrons with energy below 40 keV, may be generated at altitudes below 3200 km along geomagnetic field lines at invariant latitudes between 70 and 77°. Low-frequency components below 2 kHz may be generated over a wide region at altitudes below 6400 km along the same field lines. Thus, the frequency range of the downgoing broad-band auroral hiss seems to be explained by the whistler mode Cerenkov radiation generated from inverted-V electrons at geocentric distances below about 2 RE (Earth's radius) along polar geomagnetic field lines of invariant latitude from 70 to 77°, since the whistler mode condition for all frequencies above 1 kHz of the downgoing hiss is not satisfied at geocentric distance of 3 re on the same field lines.  相似文献   

8.
During the last two decades measurements of polar cap ionospheric electric fields and currents, field-aligned currents, and global auroral forms have been made from ground-based and space-based platforms. An attempt is made to unify these observations into a large-scale view of polar phenomena. In this view, plasma convection patterns and the corresponding electrodynamics in the polar region can consistently be ordered by the orientation of the interplanetary magnetic field (IMF). The different patterns of the electric potential and of field-aligned currents depend on where the main interaction between the terrestrial and interplanetary fields occurs, on the morning or evening side of the central polar cap, or on the dayside portion of the ‘closed’ cusp region, or on the nightside portion of the ‘open’ cusp region. One of the essential elements of this unified view is that it is possible to account for various convection patterns ranging from the four-cell pattern (during periods of strong northward IMF and By ~ 0), to the three-cell pattern (Bz > 0 and |By| 2> 0), to the conventional two-cell pattern (Bz < 0) with its possible deformation into a convection throat near the dayside cusp (during southward IMF). We also discuss the way in which the complicated field-aligned current systems can consistently be accounted for in terms of these convection patterns.  相似文献   

9.
Abstract

The Norwegian astronomer and mathematician Christopher Hansteen (1784–1873) is best known for his career-long contribution to the study of terrestrial magnetism. In his monumental Magnetismus der Erde (1819), he suggests that the earth had two magnetic axes and thus four magnetic poles. It is less known that Hansteen planned to publish a second part of Magnetismus der Erde devoted solely to the polar lights, but this work was never completed. In this article, I reconstruct Hansteen's strategy for studying the aurora borealis and explain how the polar lights were connected to his four-pole theory. I emphasize in particular the spatial and geographical dimension of Hansteen's approach, focusing on his analysis of both the auroral corona and the auroral ring. In accordance with his own theory of terrestrial magnetism, he suggested the existence of four such circumpolar auroral rings, each centered around one of the four magnetic poles identified in Magnetismus der Erde. Hansteen's auroral project entailed an appropriation of earlier ideas and methods, especially those of Edmond Halley and Alexander von Humboldt. He sought to bolster the claim for the privileged position of the Scandinavian countries for observing and analyzing the aurora.  相似文献   

10.
Zenith observations of the oxygen λ1630 nm auroral/airglow emission (produced at an altitude of ∼220 to ∼250 km) were obtained with the Mawson Fabry-Perot Spectrometer (FPS) during three ‘zenith direction only’ observing campaigns in 1993. The data show many instances of strong (50 to 100 m s−1) upwellings in the vertical wind, when the auroral oval is located equatorward of the zenith. Our data appear consistent with the existence of a region of upwelling up to ∼ 4° poleward of the poleward boundary of the visible auroral oval, rather than short duration, explosive heating events. The upwellings are probably the vertical component of wind shear produced by reversal of the zonal thermospheric winds, which occurs near the poleward boundary of the visible auroral oval. Zenith temperature was also seen to increase when the oval was equatorward of Mawson, showing rises of up to 300 K or more. However, this increase is at times unrelated to the upwellings, and seems to be caused by the expansion of the warm polar cap over the observing site.On a number of nights the boundary between the polar cap and the auroral oval was observed to pass over our site several times, occasionally showing a quasi-periodic expansion and contraction. We speculate that this quasi-periodic movement may be related to periodic auroral activity that is known to generate large-scale gravity waves.  相似文献   

11.
Intense (105 A) electric currents flow into and from the Earth's two polar ionospheres near magnetic noon. These currents, called Birkeland or magnetic field-aligned currents, are the agent by which momentum couples from the flowing solar wind plasma to drive plasma motions in the high latitude ionosphere. Coupling is strongest when the interplanetary magnetic field (IMF) has a southward component and when this occurs there exist two principal regions of Birkeland current near magnetic noon called the region 1 and the cusp systems. We present a simple model bringing theoretical order to the many patterns proposed previously for the morphology of these dayside Birkeland currents as observed by orbiting satellites in the topside polar ionosphere. Specifically we show that the cusp Birkeland current system is not a latitudinally separate region but is instead the extension in longitude of the region 1 Birkeland current from either dawn or dusk; which particular one depends on the sign of the east-west (Y) component of the IMF. The presence of an IMF Y-component therefore leads to two region 1 current systems near magnetic noon, with the poleward one being that previously called the ‘cusp’ system.  相似文献   

12.
Ground-based and spacecraft observations of polar cap geophysical phenomena during periods of northward interplanetary magnetic field (IMF) show specific patterns of electric fields, field-aligned currents, aurora and particle precipitation. These are basically different from those when the IMF is southward. The total combination of observational data for northward IMF indicates rather a closed magnetosphere. This topology has led to the formation of a specific convection pattern in the distant plasma sheet. As different theoretical studies show, the connection of the IMF to geomagnetic flux tubes poleward of the cusp region may serve as the driving mechanism for plasma sheet convection and as the dynamo of current systems. Unfortunately, the direct observations of processes in the distant magnetosphere are too scarce either to accept or reject the concept of a closed magnetosphere. There are also some experimental data that are inconsistent with the closed magnetosphere topology. Definitive open or closed models must await future measurements.  相似文献   

13.
During many magnetospheric substorms, the auroral oval near midnight is observed to expand poleward in association with strong negative perturbations measured by local ground magnetometers. We show Sondrestrom and EISCAT incoherent scatter radar measurements during three such events. In each of the events, enhanced ionization produced by the precipitation moved northward by several degrees of latitude within 10–20 min. The electric fields measured during the three events were significantly different. In one event the electric field was southward everywhere within the precipitation region. In the other two events a reversal in the meridional component of the field was observed. In one case the reversal occurred within the precipitation region, while in the other case the reversal was at the poleward boundary of the precipitation. The westward electrojet that produces the negative H-perturbation in the ground magnetic field has Hall and Pedersen components to varying degrees. In one case the Hall component was eastward and the Pedersen component was westward, but the net magnetic H-deflection on the ground was negative. Simultaneous EISCAT measurements made near the dawn meridian during one of the events show that the polar cap boundary moved northward at the same time as the aurora expanded northward at Sondrestrom. Most of the differences in the electrodynamic configuration in the three events can be accounted for in terms of the location at which the measurements were made relative to the center of the auroral bulge.  相似文献   

14.
During 1992 and 1993, record low total ozone values were observed over the middle and high northern latitudes. The ozone data from the long-operating station at Belsk, Poland, have been used to examine their departures from climatological behaviour in 1992 and 1993. It seems that not only do the exceptionally low ozone amounts recorded over the northern mid-latitudes need an explanation but also their occurrence for two years in a row. One of the possible mechanisms which may be responsible for this event is suggested to be connected with the occurrence of stratospheric minor warmings. They occur without a breakdown of the polar vortex but only with the displacement of very cold air towards lower latitudes (as in January 1992 and February 1993). It is known that air masses in the polar vortex have been chemically disturbed and, when they arrive over the sunlit middle latitudes, chemical destruction of ozone is likely to occur. During the periods under study, the strongest negative total ozone deviations correspond to strong negative temperature deviations at 30 hPa and to large potential vorticity values; this points to the presence over Europe of air masses of polar vortex origin. It has been shown that the characteristics of mid-winter stratospheric warmings and the interannual variability of winter-spring total ozone averages at Belsk are associated with each other.  相似文献   

15.
The characteristics of 1–20 mHz (Pc5) geomagnetic pulsations recorded during the daytime on the ground at cusp and boundary layer latitudes have been examined. On quiet and moderately disturbed days the major spectral contributions are due to three different mechanisms. Sustained oscillations whose properties are consistent with the Kelvin-Helmholtz instability at the low latitude boundary layer are the dominant mechanism at −70 to −75 geomagnetic latitude. Transient irregular pulsations are frequently seen at single stations at the foot of polar cap and boundary layer field lines. Occasionally similar transients occur essentially simultaneously at widely spaced stations accompanied by absorption spikes on riometer records. The latter signals are most likely due to solar wind pressure pulses on the magnetopause. At cusp latitudes the major spectral contribution arises from sustained irregular pulsations centred on magnetic noon. Although their occurrence is related to the proximity of the cusp's particle signature, it may be more appropriate to discuss these signals in terms of fluctuations in boundary layer or mantle currents.  相似文献   

16.
High time resolution measurements of Doppler shift and broadening of the (OI) >1630 nm emission in the night airglow and aurora have provided determinations of vertical velocities and temperatures in the neutral thermosphere over Mawson, Antarctica. The vertical wind exhibits a large, rapid and complex response to geomagnetic energy input. Upward winds greater than 50 m s−1 are frequently associated with the expansion phase of auroral substorms. Following the disturbance, prolonged periods of downward winds produce temperature enhancements of 200K outside the source region, thus providing a mechanism for the redistribution of geomagnetic energy. Oscillatory behaviour consistent with thermospheric gravity waves is observed during both quiet and disturbed conditions.  相似文献   

17.
During July 1987 the EISCAT radars were used to study thin layers in the ionospheric E-region. This paper outlines the observing campaign, describes the GEN-type radar program used for the UHF experiments, and discusses the ‘descending’ or ‘sequential’ layer observed on the afternoon of 12 July during a period of strong wave activity, which could be traced throughout the whole E-F1 transition region. Following the descent of one particularly marked wave, a thin layer developed around 120 km height and lasted about 100 min, with temporary disappearances and periods of upward motion which were related to variations of field aligned ion velocity, and in particular to ‘convergent nulls’ in the velocity profile. The layer was eventually dispersed by a rapid upward surge of ion velocity. Composition analysis shows that the layer contains both long-lived light ions and heavy ions, most probably Fe+.  相似文献   

18.
古代壁画是一定时期政治、经济、文化、艺术和科技发展水平的物质反映,因此,利用现代科技分析手段提取其信息并将之与古代文献结合,则可逆推其制作工艺和判定其制作时间,进而确定其历史价值、科学价值和艺术价值,为艺术史研究和保护修复提供信息。本工作利用拉曼光谱(Raman)、偏光显微镜(PLM)、扫描电子显微镜与能谱仪(SEM-EDS)、红外光谱(FT-IR)和X射线衍射(XRD)在西藏大昭寺转经廊壁画样品分析中获取的信息,结合文献,确定西藏拉萨大昭寺转经廊壁画绘制于清代晚期至20世纪80年代之间。此幅壁画地仗使用了阿嘎土,与文献记载一致;白粉层使用立德粉、碳酸镁和方解石等,与文献记载用白胶浆或者黄胶浆相异。同时发现壁画颜料采用藏族传统绘画配色方法。  相似文献   

19.
On the evening of 13 January 1983 we made simultaneous observations of optical and radar aurora using low light television cameras together with the EISCAT radar system. At 19 h 16 m 06 s UT an extremely bright auroral arc moved rapidly (about 2 km s−1) through the EISCAT radar beam. The associated rapid rise and fall in the E-region electron density indicates that there was an intense narrow electron beam associated with the optical arc. We estimate that the ionisation rate in the E-region increased at least 20-fold (from 1 × 1010 m−3 s−1 to >2 x 1011 m−3 s−1) for 1 or 2 s as the arc passed by. In addition, there was a brief (<4 s) increase of 130% in the signal returned from 250 km altitude which coincided with the arc crossing the radar beam at that height. In view of this coincidence, we find that a possible explanation is that the increase arose from short-lived molecular ions, for example vibrationally excited N+2 ions, produced in the F-region by soft precipitation associated with the arc.  相似文献   

20.
We discuss three different processes which generate electric fields at the magnetopause during northward interplanetary magnetic field (IMF) conditions. These are (1) Petschek-type magnetic field reconnection, (2) magnetic field diffusion, and (3) viscous-like interaction resulting from the Kelvin-Helmholtz instability. For northward IMF all three processes lead to the formation of a boundary layer on closed magnetic field lines adjacent to the magnetospheric boundary. The thickness of the boundary layer depend on Petschek's parameter in the first case, the magnetic Reynolds number in the second case, and an effective Reynolds number in the third case. In each case coupling between the boundary layer and the ionosphere occurs via field-aligned currents. These field-aligned currents result from the penetration into the polar ionosphere of the electric field generated at the magnetospheric boundary. These currents are closed by a transverse current in the boundary layer and the associated Lorentz force causes a decrease of the kinetic energy of the solar wind plasma inside the boundary layer. As a result of this velocity decrease the thickness of the boundary layer increases on both flanks of the magnetosphere near the equatorial plane. The convergence of the boundary layer on the dawn and dusk sides leads to antisunward plasma flow in the magnetospheric tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号