首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integrated fluid inclusion and stable isotope study was carried out on hydrothermal veins (Sb‐bearing quartz veins, metal‐bearing fluorite–barite–quartz veins) from the Schwarzwald district, Germany. A total number of 106 Variscan (quartz veins related to Variscan orogenic processes) and post‐Variscan deposits were studied by microthermometry, Raman spectroscopy, and stable isotope analysis. The fluid inclusions in Variscan quartz veins are of the H2O–NaCl–(KCl) type, have low salinities (0–10 wt.% eqv. NaCl) and high Th values (150–350°C). Oxygen isotope data for quartz range from +2.8‰ to +12.2‰ and calculated δ18OH2O values of the fluid are between ?12.5‰ and +4.4‰. The δD values of water extracted from fluid inclusions vary between ?49‰ and +4‰. The geological framework, fluid inclusion and stable isotope characteristics of the Variscan veins suggest an origin from regional metamorphic devolatilization processes. By contrast, the fluid inclusions in post‐Variscan fluorite, calcite, barite, quartz, and sphalerite belong to the H2O–NaCl–CaCl2 type, have high salinities (22–25 wt.% eqv. NaCl) and lower Th values of 90–200°C. A low‐salinity fluid (0–15 wt.% eqv. NaCl) was observed in late‐stage fluorite, calcite, and quartz, which was trapped at similar temperatures. The δ18O values of quartz range between +11.1‰ and +20.9‰, which translates into calculated δ18OH2O values between ?11.0‰ and +4.4‰. This range is consistent with δ18OH2O values of fluid inclusion water extracted from fluorite (?11.6‰ to +1.1‰). The δD values of directly measured fluid inclusion water range between ?29‰ and ?1‰, ?26‰ and ?15‰, and ?63‰ and +9‰ for fluorite, quartz, and calcite, respectively. Calculations using the fluid inclusion and isotope data point to formation of the fluorite–barite–quartz veins under near‐hydrostatic conditions. The δ18OH2O and δD data, particularly the observed wide range in δD, indicate that the mineralization formed through large‐scale mixing of a basement‐derived saline NaCl–CaCl2 brine with meteoric water. Our comprehensive study provides evidence for two fundamentally different fluid systems in the crystalline basement. The Variscan fluid regime is dominated by fluids generated through metamorphic devolatilization and fluid expulsion driven by compressional nappe tectonics. The onset of post‐Variscan extensional tectonics resulted in replacement of the orogenic fluid regime by fluids which have distinct compositional characteristics and are related to a change in the principal fluid sources and the general fluid flow patterns. This younger system shows remarkably persistent geochemical and isotopic features over a prolonged period of more than 100 Ma.  相似文献   

2.
Quartz veins hosted by the high‐grade crystalline rocks of the Modum complex, Southern Norway, formed when basinal fluids from an overlying Palaeozoic foreland basin infiltrated the basement at temperatures of c. 220°C (higher in the southernmost part of the area). This infiltration resulted in the formation of veins containing both two‐phase and halite‐bearing aqueous fluid inclusions, sometimes with bitumen and hydrocarbon inclusions. Microthermometric results demonstrate a very wide range of salinities of aqueous fluids preserved in these veins, ranging from c. 0 to 40 wt% NaCl equivalent. The range in homogenization temperatures is also very large (99–322°C for the entire dataset) and shows little or no correlation with salinity. A combination of aqueous fluid microthermometry, halogen geochemistry and oxygen isotope studies suggest that fluids from a range of separate aquifers were responsible for the quartz growth, but all have chemistries comparable to sedimentary formation waters. The bulk of the quartz grew from relatively low δ18O fluids derived directly from the basin or equilibrated in the upper part of the basement (T < 200°C). Nevertheless, some fluids acquired higher salinities due to deep wall‐rock hydration reactions leading to salt saturation at high temperatures (>300°C). The range in fluid inclusion homogenization temperatures and densities, combined with estimates of the ambient temperature of the basement rocks suggests that at different times veins acted as conduits for influx of both hotter and colder fluids, as well as experiencing fluctuations in fluid pressure. This is interpreted to reflect episodic flow linked to seismicity, with hotter dry basement rocks acting as a sink for cooler fluids from the overlying basin, while detailed flow paths reflected local effects of opening and closing of individual fractures as well as reaction with wall rocks. Thermal considerations suggest that the duration of some flow events was very short, possibly in the order of days. As a result of the complex pattern of fracturing and flow in the Modum basement, it was possible for shallow fluids to penetrate basement rocks at significantly higher temperatures, and this demonstrates the potential for hydrolytic weakening of continental crust by sedimentary fluids.  相似文献   

3.
The Jian copper deposit, located on the eastern edge of the Sanandaj–Sirjan metamorphic zone, southwest of Iran, is contained within the Surian Permo‐Triassic volcano‐sedimentary complex. Retrograde metamorphism resulted in three stages of mineralization (quartz ± sulfide veins) during exhumation of the Surian metamorphic complex (Middle Jurassic time; 159–167 Ma), and after the peak of the metamorphism (Middle to Late Triassic time; approximately 187 Ma). The early stage of mineralization (stage 1) is related to a homogeneous H2O–CO2 (XCO2 > 0.1) fluid characterized by moderate salinity (<10 wt.% NaCl equivalent) at high temperature and pressure (>370°C, >3 kbar). Early quartz was followed by small amounts of disseminated fine‐grained pyrite and chalcopyrite. Most of the main‐ore‐stage (stage 2) minerals, including chalcopyrite, pyrite and minor sphalerite, pyrrhotite, and galena, precipitated from an aqueous‐carbonic fluid (8–18 wt.% NaCl equivalent) at temperatures ranging between 241 and 388°C during fluid unmixing process (CO2 effervescence). Fluid unmixing in the primary carbonaceous fluid at pressures of 1.5–3 kbar produced a high XCO2 (>0.05) and a low XCO2 (<0.01) aqueous fluid in ore‐bearing quartz veins. Oxygen and hydrogen isotope compositions suggest mineralization by fluids derived from metamorphic dehydration (δ18Ofluid = +7.6 to +10.7‰ and δD = ?33.1 to ?38.5‰) during stage 2. The late stage (stage 3) is related to a distinct low salinity (1.5–8 wt.% NaCl equivalent) and temperatures of (120–230°C) aqueous fluid at pressures below 1.5 kbar and the deposition of post‐ore barren quartz veins. These fluids probably derived from meteoric waters, which circulated through the metamorphic pile at sufficiently high temperatures and acquire the characteristics of metamorphic fluids (δ18Ofluid = +4.7 to +5.1‰ and δD = ?52.3 to ?53.9‰) during waning stages of the postearly Cimmerian orogeny in Surian complex. The sulfide‐bearing quartz veins are interpreted as a small‐scale example of redistribution of mineral deposits by metamorphic fluids. This study suggests that mineralization at the Jian deposit is metamorphogenic in style, probably related to a deep‐seated mesothermal system.  相似文献   

4.
The calc‐alkaline plutonic complex from Charroux‐Civray (north‐western part of the French Massif Central) displays multiphase hydrothermal alteration. Plutonic rocks, as well as early retrograde Ca–Al silicate assemblages, which have crystallized during cooling and uplifting of the plutonic series, are affected by multiphase chlorite–phengite–illite–carbonate alteration linked to intense pervasive fluid circulation through microfractures. The petrographic study of alteration sequences and their associated fluid inclusions in microfissures of the plutonic rocks, as well as in mineral fillings of the veins, yields a reconstruction of the PTX evolution of the Hercynian basement after the crystallization of the main calc‐alkaline plutonic bodies. This reconstruction covers the uplift of the basement to its exposure and the subsequent burial by Mesozoic sediments. Cooling of the calc‐alkaline plutonic series started at solidus temperatures (~650°C), at a pressure of about 4 kbar (1 bar = 105 N m?2), as indicated by magmatic epidote stability, hornblende barometry and fluid inclusion data. Cooling continued under slightly decreasing pressure during uplift down to 2–3 kbar at 200–280°C (prehnite–pumpellyite paragenesis). Then, a hot geothermal circulation of CO2‐bearing fluids was induced within the calc‐alkaline rocks leading to the formation of greisen‐like mineralizations. During this stage, temperatures around 400–450°C were still high for the inferred depths (~2 kbar). They imply abnormal heat flows and thermal gradients of 60–80°C km?1. The hypothesis of the existence of one large or a succession of smaller peraluminous plutons at depth, supported by geophysical data, suggests that localized heat flows were linked to concealed leucogranite intrusions. As uplift continued, greisen mineralization was subsequently affected by the chlorite–phengite–dolomite assemblage, correlated with aqueous and nitrogen‐bearing fluid circulations in the temperature range of 400–450°C. In a later stage, a continuous temperature decrease at constant pressure (~0.5 kbar) led to the alteration of the dolomite–illite–chlorite type in the 130–250°C temperature range.  相似文献   

5.
Highly saline, deep‐seated basement brines are of major importance for ore‐forming processes, but their genesis is controversial. Based on studies of fluid inclusions from hydrothermal veins of various ages, we reconstruct the temporal evolution of continental basement fluids from the Variscan Schwarzwald (Germany). During the Carboniferous (vein type i), quartz–tourmaline veins precipitated from low‐salinity (<4.5wt% NaCl + CaCl2), high‐temperature (≤390°C) H2O‐NaCl‐(CO2‐CH4) fluids with Cl/Br mass ratios = 50–146. In the Permian (vein type ii), cooling of H2O‐NaCl‐(KCl‐CaCl2) metamorphic fluids (T ≤ 310°C, 2–4.5wt% NaCl + CaCl2, Cl/Br mass ratios = 90) leads to the precipitation of quartz‐Sb‐Au veins. Around the Triassic–Jurassic boundary (vein type iii), quartz–haematite veins formed from two distinct fluids: a low‐salinity fluid (similar to (ii)) and a high‐salinity fluid (T = 100–320°C, >20wt% NaCl + CaCl2, Cl/Br mass ratios = 60–110). Both fluids types were present during vein formation but did not mix with each other (because of hydrogeological reasons). Jurassic–Cretaceous veins (vein type iv) record fluid mixing between an older bittern brine (Cl/Br mass ratios ~80) and a younger halite dissolution brine (Cl/Br mass ratios >1000) of similar salinity, resulting in a mixed H2O‐NaCl‐CaCl2 brine (50–140°C, 23–26wt% NaCl + CaCl2, Cl/Br mass ratios = 80–520). During post‐Cretaceous times (vein type v), the opening of the Upper Rhine Graben and the concomitant juxtaposition of various aquifers, which enabled mixing of high‐ and low‐salinity fluids and resulted in vein formation (multicomponent fluid H2O‐NaCl‐CaCl2‐(SO4‐HCO3), 70–190°C, 5–25wt% NaCl‐CaCl2 and Cl/Br mass ratios = 2–140). The first occurrence of highly saline brines is recorded in veins that formed shortly after deposition of halite in the Muschelkalk Ocean above the basement, suggesting an external source of the brine's salinity. Hence, today's brines in the European basement probably developed from inherited evaporitic bittern brines. These were afterwards extensively modified by fluid–rock interaction on their migration paths through the crystalline basement and later by mixing with younger meteoric fluids and halite dissolution brines.  相似文献   

6.
J. X. LI  G. M. LI  K. Z. QIN  B. XIAO 《Geofluids》2011,11(2):134-143
The Duobuza porphyry copper–gold deposit (proven Cu resources of 2.7 Mt, 0.94% Cu and 13 t gold, 0.21 g t?1 Au) is located at the northern margin of the Bangong‐Nujiang suture zone separating the Qiangtang and Lhasa Terranes. The major ore‐bearing porphyry consists of granodiorite. The alteration zone extends from silicification and potassic alteration close to the porphyry stock to moderate argillic alteration and propylitization further out. Phyllic alteration is not well developed. Sericite‐quartz veins only occur locally. High‐temperature, high‐salinity fluid inclusions were observed in quartz phenocrysts and various quartz veins. These fluid inclusions are characterized by sylvite dissolution between 180 and 360°C and halite dissolution between 240 and 540°C, followed by homogenization through vapor disappearance between 620 and 960°C. Daughter minerals were identified by SEM as chalcopyrite, halite, sylvite, rutile, K–feldspar, and Fe–Mn‐chloride. They indicate that the fluid is rich in ore‐forming elements and of high oxidation state. The fluid belongs to a complex hydrothermal system containing H2O – NaCl – KCl ± FeCl2 ± CaCl2 ± MnCl2. With decreasing homogenization temperature, the fluid salinity tends to increase from 34 to 82 wt% NaCl equiv., possibly suggesting a pressure or Cl/H2O increase in the original magma. No coexisting vapor‐rich fluid inclusions with similar homogenization temperatures were found, so the brines are interpreted to have formed by direct exsolution from magma rather than trough boiling off of a low‐salinity vapor. Estimated minimum pressure of 160 MPa imply approximately 7‐km depth. This indicates that the deposit represents an orthomagmatic end member of the porphyry copper deposit continuum. Two key factors are proposed for the fluid evolution responsible for the large size of the gold‐rich porphyry copper deposit of Duobuza: (i) ore‐forming fluids separated early from the magma, and (ii) the hydrothermal fluid system was of magmatic origin and highly oxidized.  相似文献   

7.
Hydrothermal polymetallic veins of the Gemeric unit of the Western Carpathians are oriented coherently with the foliation of their low‐grade Variscan basement host. Early siderite precipitated from homogeneous NaCl‐KCl‐CaCl2‐H2O brines with minor CO2, while immiscible gas–brine mixtures are indicative of the superimposed barite, quartz–tourmaline and quartz–sulphide stages. The high‐salinity aqueous fluid (18–35 wt%) found in all mineralization stages corresponds to formation water modified by interaction with crystalline basement rocks at temperatures between 140 and 300°C. High brominity (around 1000 ppm in average) resulted from evaporation and anhydrite precipitation in a Permo‐Triassic marine basin, and from secondary enrichment by dissolution of organic matter in the marine sediments at diagenetic temperatures. Sulphate depletion reflects thermogenic reduction during infiltration of the formation waters into the Variscan crystalline basement. Crystallization temperatures of the siderite fill (140–300°C) and oxygen isotope ratios of the parental fluids (4–10‰) increase towards the centre of the Gemeric cleavage fan, probably as a consequence of decreasing water/rock ratios in rock‐buffered hydrothermal systems operating during the initial stages of vein evolution. In contrast, buoyant gas–water mixtures, variable salinities and strongly fluctuating P–T parameters in the successive mineralization stages reflect transition from a closed to an open hydrothermal system and mixing of fluids from various sources. Depths of burial were 6–14 km (1.7–4.4 kbar, in a predominantly lithostatic fluid regime) during the siderite and barite sub‐stages of the north‐Gemeric veins, and up to 16 km (1.6–4.5 kbar, in a hydrostatic to lithostatic fluid regime) in the quartz–tourmaline stage of the south‐Gemeric veins. The fluid pressure decreased down to approximately 0.6 kbar during crystallization of sulphides. U‐Pb‐Th, 40Ar/39Ar and K/Ar geochronology applied to hydrothermal muscovite–phengite and monazite, as well as cleavage phyllosilicates in the adjacent basement rocks and deformed Permian conglomerates corroborated the opening of hydrothermal veins during Lower Cretaceous thrusting and their rejuvenation during Late Cretaceous sinistral transpressive shearing and extension.  相似文献   

8.
The chemical evolution of fluids in Alpine fissure veins (open cavities with large free‐standing crystals) has been studied by combination of fluid inclusion petrography, microthermometry, LA‐ICPMS microanalysis, and thermodynamic modeling. The quartz vein systems cover a metamorphic cross section through the Central Alps (Switzerland), ranging from subgreenschist‐ to amphibolite‐facies conditions. Fluid compositions change from aqueous inclusions in subgreenschist‐ and greenschist‐facies rocks to aqueous–carbonic inclusions in amphibolite‐facies rocks. The fluid composition is constant for each vein, across several fluid inclusion generations that record the growth history of the quartz crystals. Chemical solute geothermometry, fluid inclusion isochores, and constraints from fluid–mineral equilibria modeling were used to reconstruct the pressure–temperature conditions of the Alpine fissure veins and to compare them with the metamorphic path of their host rocks. The data demonstrate that fluids in the Aar massif were trapped close to the metamorphic peak whereas the fluids in the Penninic nappes record early cooling, consistent with retrograde alteration. The good agreement between the fluid–mineral equilibria modeling and observed fluid compositions and host‐rock mineralogy suggests that the fluid inclusions were entrapped under rock‐buffered conditions. The molar Cl/Br ratios of the fluid inclusions are below the seawater value and would require unrealistically high degrees of evaporation and subsequent dilution if they were derived from seawater. The halogen data may thus be better explained by interaction between metamorphic fluids and organic matter or graphite in metasedimentary rocks. The volatile content (CO2, sulfur) in the fluid inclusions increases systematically as function of the metamorphic grade, suggesting that the fluids have been produced by prograde devolatilization reactions. Only the fluids in the highest grade rocks were partly modified by retrograde fluid–rock interactions, and all major element compositions reflect equilibration with the local host rocks during the earliest stages of postmetamorphic uplift.  相似文献   

9.
A well‐developed fracture‐filling network is filled by dominantly Ca‐Al‐silicate minerals that can be found in the polymetamorphic rock body of the Baksa Gneiss Complex (SW Hungary). Detailed investigation of this vein network revealed a characteristic diopside→epidote→sphalerite→albite ± kfeldspar→chlorite1 ± prehnite ± adularia→chlorite2→chlorite3→pyrite→calcite1→calcite2→calcite3 fracture‐filling mineral succession. Thermobarometric calculations (two feldspar: 230–336°C; chlorites: approximately 130–300°C) indicate low‐temperature vein formation conditions. The relative succession of chlorites in the mineral sequence combined with the calculated formation temperatures reveals a cooling trend during precipitation of the different chlorite phases (Tchlorite1: 260 ± 32°C →Tchlorite2: 222 ± 20°C →Tchlorite3: 154 ± 13°C). This cooling trend can be supported by the microthermometry data of primary fluid inclusions in diopside (Th: 276–362°C) and epidote (Th: 181–359°C) phases. The identical chemical character (0.2–1.5 eq. wt% NaCl) of these inclusions mean that vein mineralization occurred in a same fluid environment. The high trace element content (e.g. As, Cu, Zn, Mn) and Co/Ni ratio approximately 1–5 of pyrite grains support the postmagmatic hydrothermal origin of the veins. The vein microstructure and identical fluid composition indicate that vein mineralization occurred in an interconnected fracture system where crystals grew in fluid filled cracks. Vein system formed at approximately <200 MPa pressure conditions during cooling from approximately 480°C to around 150°C. The rather different fluid characteristics (Th: 75–124°C; 17.5–22.6 eq. wt% CaCl2) of primary inclusions of calcite1 combining with the special δ18O signature of fluid from which this mineral phase precipitated refer to hydrological connection between the crystalline basement and the sedimentary cover.  相似文献   

10.
Structure‐ and tectonic‐related gas migration into Ordovician sandstone reservoirs and its impact on diagenesis history were reconstructed in two gas fields in the Sbaa Basin, in SW Algeria. This was accomplished by petrographical observations, fluid inclusion microthermometry and stable isotope geochemistry on quartz, dickite and carbonate cements and veins. Two successive phases of quartz cementation (CQ1 and CQ2) occurred in the reservoirs. Two phase aqueous inclusions show an increase in temperatures and salinities from the first CQ1 diagenetic phase toward CQ2 in both fields. Microthermometric data on gas inclusions in quartz veins reveal the presence of an average of 92 ± 5 mole% of CH4 considering a CH4‐CO2 system, which is similar to the present‐day gas composition in the reservoirs. The presence of primary methane inclusions in early quartz overgrowths and in quartz and calcite veins suggests that hydrocarbon migration into the reservoir occurred synchronically with early quartz cementation in the sandstones located near the contact with the Silurian gas source rock at 100–140°C during the Late Carboniferous period and the late Hercynian episode fracturing at temperatures between 117 and 185°C, which increased in the NW‐direction of the basin. During the fracture filling, three main types of fluids were identified with different salinities and formation temperatures. A supplementary phase of higher fluid temperature (up to 226°C) recorded in late quartz, and calcite veins is related to a Jurassic thermal event. The occurrence of dickite cements close to the Silurian base near the main fault areas in both fields is mainly correlated with the sandstones where the early gas was charged. It implies that dickite precipitation is related to acidic influx. Late carbonate cements and veins (calcite – siderite – ankerite and strontianite) occurred at the same depths resulting from the same groundwater precipitation. The absence of methane inclusions in calcite cements result from methane flushing by saline waters.  相似文献   

11.
Y. LIU  G. CHI  K. M. BETHUNE  B. DUBÉ 《Geofluids》2011,11(3):260-279
The Red Lake mine trend, a deformation zone in the Archean Red Lake greenstone belt that hosts the world‐class Campbell‐Red Lake gold deposit, is characterized by abundant foliation‐parallel iron‐carbonate ± quartz veins with banded colloform‐crustiform structures and cockade breccias overprinted by silicification and gold mineralization. There is an apparent incompatibility between the cavity‐fill structures of the veins and breccias (typically developed at shallow crustal depths) and the upper greenschist to lower amphibole facies metamorphic conditions recorded in the host rocks (indicating relatively deep environments). This, together with the development of veins along the foliation plane, represents an enigmatic problem that may be related to the interplay between fluid dynamics and stress field. We approach this problem through systematic study of fluid inclusion planes (FIPs) in the vein minerals, including the orientations of the FIPs and the pressure–temperature conditions inferred from fluid inclusion microthermometry. We find that fluid inclusions in the main stage vein minerals (pregold mineralization ankerite and quartz and syn‐ore quartz) are predominantly carbonic without a visible aqueous phase, whereas many inclusions in the postore stage contain an aqueous phase. Most FIPs are subvertical, and many are subparallel to the foliation. High fluid pressure coupled with the high wetting angles of the water‐poor, carbonic fluids may have been responsible for the abundance of brittle deformation features. The development of subvertical FIPs is interpreted to indicate episodic switching of the maximum principal compressive stress (σ1) from subhorizontal (perpendicular to the foliation) to subvertical (parallel to the foliation) orientation. The subvertical σ1 is favorable for the formation of foliation‐parallel veins, as fractures are preferentially opened along the foliation in such a stress regime, the origin of which may be linked to the fluid source.  相似文献   

12.
Thermally re‐equilibrated fluid inclusions are reported in natural fissure quartz (qtz1) from polymineralic veins in the diagenetic‐anchizonal clastic sedimentary rocks of the Ciñera‐Matallana coal basin (Variscan, NW Spain). Euhedral quartz formed during early fissure opening from an immiscible fluid mixture composed of a low salinity aqueous solution and a CH4‐rich vapour phase, at temperatures of about 110–120°C and pressures ranging from 15 to 56 MPa. Five textural types of re‐equilibration are recognised in progressive order of inclusion modification: scalloped, hairy, annular‐ring shaped, haloes and decrepitation clusters. These textures resulted from a combination of brittle fracturing and dissolution and re‐precipitation of quartz, with preferential loss of water. The thermal peak was short‐lived, but was high enough to induce extensive decrepitation of fluid inclusions in vein quartz throughout the entire basin. Enhanced temperatures can be related to the intrusion of diorites in the basin. Careful analysis of textural features in fluid inclusions from diagenetic and very low‐grade metamorphism environments constitutes a useful tool for recording basin thermal history.  相似文献   

13.
Quartz veins in the early Variscan Monts d’Arrée slate belt (Central Armorican Terrane, Western France), have been used to determine fluid‐flow characteristics. A combination of a detailed structural analysis, fluid inclusion microthermometry and stable isotope analyses provides insights in the scale of fluid flow and the water–rock interactions. This research suggests that fluids were expelled during progressive deformation and underwent an evolution in fluid chemistry because of changing redox conditions. Seven quartz‐vein generations were identified in the metasedimentary multilayer sequence of the Upper Silurian to Lower Devonian Plougastel Formation, and placed within the time frame of the deformation history. Fluid inclusion data of primary inclusions in syn‐ to post‐tectonic vein generations indicate a gradual increase in methane content of the aqueous–gaseous H2O–CO2–NaCl–CH4–N2 fluid during similar P–T conditions (350–400°C and 2–3.5 kbar). The heterogeneous centimetre‐ to metre‐scale multilayer sequence of quartzites and phyllites has a range of oxygen‐isotope values (8.0–14.1‰ Vienna Standard Mean Ocean Water), which is comparable with the range in the crosscutting quartz veins (10.5–14.7‰ V‐SMOW). Significant differences between oxygen‐isotope values of veins and adjacent host rock (Δ = ?2.8‰ to +4.9‰ V‐SMOW) suggest an absence of host‐rock buffering on a centimetre scale, but based on the similar range of isotope values in the Plougastel Formation, an intraformational buffering and an intermediate‐scale fluid‐flow system could be inferred. The abundance of veins, their well‐distributed and isolated occurrence, and their direct relationship with the progressive deformation suggests that the intermediate‐scale fluid‐flow system primarily occurred in a dynamically generated network of temporarily open fractures.  相似文献   

14.
Fluid inclusion and stable isotope data from quartz and carbonate minerals in fracture fillings and ‘ironstone’ nodules from the South Wales Coalfield have been used to characterise the fluids generated during basin evolution and associated coalification. Carbonates grew first, probably at relatively shallow depths and low temperatures (<100°C). The carbonates exhibit a trend of increasing C‐isotopic values across the coalfield, ranging from δ13C = ?12‰ VPDB in the SE of the coalfield to 0‰ VPDB in the NW, possibly as a result of increasing methanogenesis in the deeper (NW) parts of the coalfield. Quartz formed at a later stage of basin formation, probably at temperatures between 150 and 200°C. Fluid inclusions in these minerals suggest that burial and coalification of the sediments were associated with mixed aqueous–petroleum fluids. Furthermore, the density of these petroleum fluids decreases towards the NW of the coalfield, where the rank of the associated coal increases to anthracite grade. The study confirms that the composition and temperature of these fluids closely correlate with the variations in coal rank, indicating a possible causal link. The data also give general support to models that propose regional fluid flow in the basin. and are consistent with the erosion of approximately 2 km of section which is not preserved today. A geothermal gradient (at maximum burial) of 45°C km?1 is proposed, and thus no exceptionally anomalous thermal regime is required to explain coal rank variation.  相似文献   

15.
We demonstrate the use of PVT fluid inclusion modelling in the calculation of palaeofluid formation pressures, using samples from the YC21‐1‐1 and YC21‐1‐4 wells in the YC21‐1 structural closure, Qiongdongnan Basin, South China Sea. Homogenisation temperatures and gas/liquid ratios were measured in aqueous fluid inclusions, and associated light hydrocarbon/CO2‐bearing inclusions, and their compositions were determined using a crushing technique. The vtflinc software was used to construct PT phase diagrams that enabled derivation of the minimum trapping pressure for each order of fluid inclusion. Through the projection of average homogenisation temperatures (155, 185.5 and 204.5°C) for three orders of fluid inclusion on the thermal‐burial history diagram of the Oligocene Yacheng and Lingshui formations, their trapping times were constrained at 4.3, 2.1 and 1.8 Ma, respectively. The formation pressure coefficient, the ratio of fluid pressure/hydrostatic pressure established by PVT modelling coupled with DST data, demonstrates that one and a half cycles of pressure increase–discharge developed in the Yacheng and Lingshui formations for about 4.3 Ma. In comparison, the residual formation pressure determined by 2D numerical modelling in the centre of LeDong depression shows two and a half pressure increase–discharge cycles for about 28 Ma. The two different methods suggest that a high fluid potential in the Oligocene reservoir of the YC21‐1 structure developed at two critical stages for regional oil and natural gas migration and accumulation (5.8 and 2.0 Ma, respectively). Natural gas exploration in this area is therefore not advisable.  相似文献   

16.
Physical parameters of petroleum‐bearing fluid inclusions such as bulk density (ρ), molar volume (Vm), vapour volume fraction (?vap) and homogenization temperature (Th) are essential information to model petroleum composition (x) in inclusions and to reconstruct palaeotemperature and palaeopressure of trapping. For the main petroleum types contained in a fluid inclusion, we can follow how ?vap and Th are simultaneously influenced by a change of bulk density in a ?vap versus Th projection. We have correlated Th and ?vap for different petroleum compositions for a large range of bulk density values. However, postentrapment events under new pressure (P) and temperature (T) conditions can greatly modify the initial fingerprints of physical conditions and chemical composition of fluid inclusions. Re‐equilibration is frequent, especially in the case of fragile minerals. Stretching and leakage phenomenon have been simulated using the Petroleum Inclusion Thermodynamics (pit ) software, from virtual petroleum inclusions with known hydrocarbon composition. The aim of these simulations is to understand how ?vap and Th evolve with these re‐equilibration phenomena, with respect to the oil composition. Results of stretching simulations show a characteristic increase of Th and ?vap along correlation curves, with the curve shape dependent on petroleum composition. Leakage simulations show an increase of Th and a smaller increase or even a decrease in ?vap. Consequently, the better preserved inclusions in a given population can be presumed to be those that have the lowest Th. Applications of Th and ?vap measurements of natural inclusions in calcite and in quartz showed that the fragility of the host mineral is a key factor allowing the recording of post‐entrapment events. Inclusions that have stretched or leaked are identified and the best preserved inclusions selected for evaluation of P–T–x trapping conditions. Moreover, petroleum types trapped in inclusions can be identified from ?vap and Th measurements without compositional modelling.  相似文献   

17.
Metalliferous (Fe–Cu–Pb–Zn) quartz–carbonate–sulphide veins cut greenschist to epidote–amphibolite facies metamorphic rocks of the Dalradian, SW Scottish Highlands, with NE–SW to NW–SE trends, approximately parallel or perpendicular to regional structures. Early quartz was followed by pyrite, chalcopyrite, sphalerite, galena, barite, late dolomite–ankerite and clays. Both quartz–sulphide and carbonate vein mineralisation is associated with brecciation, indicating rapid release of fluid overpressure and hydraulic fracturing. Two distinct mineralising fluids were identified from fluid inclusion and stable isotope studies. High temperature (>350°C) quartz‐precipitating fluids were moderately saline (4.0–12.7 wt.% NaCl equivalent) with low (approximately 0.05). Quartz δ18O (+11.7 to +16.5‰) and sulphide δ34S (?13.6 to ?1.1‰) indicate isotopic equilibrium with host metasediments (rock buffering) and a local metasedimentary source of sulphur. Later, low‐temperature (TH = 120–200°C) fluids, probably associated with secondary carbonate, barite and clay formation, were also moderately saline (3.8–9.1 wt.% NaCl equivalent), but were strongly enriched in 18O relative to host Dalradian lithologies, as indicated by secondary dolomite–ankerite (δ18O = +17.0 to +29.0‰, δ13C = ?1.0 to ?3.0‰). Compositions of carbonate–forming fluids were externally buffered. The veins record the fluid–rock interaction history of metamorphic host rocks during cooling, uplift and later extension. Early vein quartz precipitated under retrograde greenschist facies conditions from fluids probably derived by syn‐metamorphic dehydration of deeper, higher‐grade rocks during uplift and cooling of the Caledonian metamorphic complex. Veins are similar to those of mesothermal veins in younger Phanerozoic metamorphic belts, but are rare in the Scottish Dalradian. Early quartz veins were reactivated by deep penetration of low‐temperature basin fluids that precipitated carbonate and clays in veins and adjacent Dalradian metasediments throughout the SW Highlands, probably in the Permo‐Carboniferous. This event is consistent with paragenetically ambiguous barite with δ34S characteristic of late Palaeozoic basinal brines.  相似文献   

18.
Y. Song  Z. Hou  Y. Cheng  T. Yang  C. Xue 《Geofluids》2016,16(1):56-77
Extensive quartz–carbonate–Cu sulfide veins occur in clastic rocks and are spatially related to Paleocene granites in the western border of the Lanping Basin, western Yunnan, China. Abundant aqueous‐carbonic fluid inclusions occur in these veins but their origin is debated. In the Jinman–Liancheng deposit, individual primary inclusion groups contain either exclusively liquid‐rich inclusions (Gl), or coexisting liquid‐rich and vapor‐rich inclusions (Glv). Microthermometry and estimate of CO2 content indicate that type Gl inclusions either have homogenization temperatures (Th) 238–263°C and contain c. 3.9–5.5 mole % CO2, or have Th 178–222°C and contain c. 1.6–3.2 mole % CO2. Type Glv inclusions are thought to represent samples of fluid unmixing that occurred at 183–218°C. At that time, the liquid phase in the unmixing fluid may contain c. 2.0–3.3 mole % CO2. As such, the correlation of CO2 content with Th for type Gl inclusions is thought to be caused by fluid unmixing with decreasing temperature and subsequent CO2 escape. δ18O and δD values of the parent water mainly fall in the field below that of primary magmatic water, indicative of fluid derivation from degassed (in open system) magmatic water, with no contributions from basinal or meteoric water. Initial Sr isotopic compositions of hydrothermal carbonates suggest that the fluid was magmatic, probably derived from the Paleogene granites. δ13CPDB values (?4‰ to ?7‰) of the hydrothermal carbonates and δ34SVCDT values of sulfides (mainly ?11‰ to +5‰) indicate that the carbon and sulfur can be derived from (degassed) magma and/or nonmagmatic sources. The CO2‐rich and magmatic‐water‐derived fluid at Jinman–Liancheng differs from the CO2‐poor and basinally derived fluid in sediment‐hosted stratiform Cu (SSC) deposits, which suggests that there are no genetic linkages between the vein Cu and SSC deposits in the Lanping Basin.  相似文献   

19.
The fluorite deposits of Asturias (northern Iberian Peninsula) are hosted by rocks of Permo‐Triassic and Palaeozoic age. Fluid inclusions in ore and gangue minerals show homogenization temperatures from 80 to 170°C and the presence of two types of fluids: an H2O–NaCl low‐salinity fluid (<8 eq. wt% NaCl) and an H2O–NaCl–CaCl2 fluid (7–13 wt% NaCl and 11–14 wt% CaCl2). The low salinity and the Cl/Br and Na/Br ratios (Cl/Brmolar 100–700 and Na/Brmolar 20–700) are consistent with an evaporated sea water origin of this fluid. The other end‐member of the mixture was highly saline brine with high Cl/Br and Na/Br ratios (Cl/Brmolar 700–13 000 and Na/Brmolar 700–11 000) generated after dissolution of Triassic age evaporites. LA‐ICP‐MS analyses of fluid inclusions in fluorite reveal higher Zn, Pb and Ba contents in the high‐salinity fluids (160–500, 90–170, 320–480 p.p.m. respectively) than in the low‐salinity fluid (75–230, 25–150 and 100–300 p.p.m. respectively). The metal content of the fluids appears to decrease from E to W, from Berbes to La Collada and to Villabona. The source of F is probably related to leaching of volcanic rocks of Permian age. Brines circulated along faults into the Palaeozoic basement. Evaporated sea water was present in permeable rocks and faults along or above the unconformity between the Permo‐Triassic sediments and the Palaeozoic basement. Mineralization formed when the deep brines mixed with the surficial fluids in carbonates, breccias and fractures resulting in the formation of veins and stratabound bodies of fluorite, barite, calcite, dolomite and quartz and minor amounts of sulphides. Fluid movement and mineralization occurred between Late Triassic and Late Jurassic times, probably associated with rifting events related to the opening of the Atlantic Ocean. This model is also consistent with the geodynamic setting of other fluorite‐rich districts in Europe.  相似文献   

20.
A combined clay mineralogical, fluid inclusion, and K‐Ar study of Upper Jurassic metasediments at the Gehn (Lower Saxony Basin, Germany) provides evidence for a transient hydrothermal event during Upper Cretaceous basin inversion centered on a prominent gravimetric anomaly. Kaolinite and smectite in Oxfordian pelitic parent rocks that cap a deltaic sandstone unit were locally transformed into pyrophyllite, 2M1 illite, R3 illite–smectite, chlorite, and berthierine at the Ueffeln quarry. The pyrophyllite‐bearing metapelites lack bedding‐parallel preferred orientation of sheet silicates and experienced peak temperatures of about 260–270°C consistent with microthermometric data on quartz veins in the underlying silicified sandstones. The presence of expandable layers in illite–smectite and high Kübler Index values indicate that the thermal event was rather short‐lived. K‐Ar dating of the <0.2 μm fraction of the pyrophyllite‐bearing Ueffeln metapelite yields a maximum illitization age of 117 ± 2 Ma. Lower trapping temperatures of aqueous fluid inclusions in quartz veins and the absence of pyrophyllite in metapelites of the Frettberg quarry in a distance of about 2.5 km from the Ueffeln quarry infer maximum paleotemperatures of only 220°C. The highly localized thermal anomaly at Ueffeln suggests fault‐controlled fluid migration and heat transfer that provided a thermal aureole for pyrophyllite formation in the metapelites rather than metamorphism due to deep burial. A pH neutral hydrothermal fluid that formed by devolatilization reactions or less likely by mixing of meteoric and marine waters that interacted at depth with shales is indicated by the low salinity (3–5 wt. % NaCl equiv.) of aqueous inclusions, their coexistence with methane–carbon dioxide‐dominated gas inclusions as well as carbon, hydrogen, and oxygen isotope data. The upwelling zone of hydrothermal fluids and the thermal maximum is centered on a gravimetric anomaly interpreted as an igneous intrusion (‘Bramsche Massif’) providing the heat source for the intrabasinal hydrothermal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号