首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The flux of ionisation at 850 km height is calculated using the MSIS atmospheric model, a simplified form for the continuity equation at the peak of the F2-layer, and observed values of NmF2. Results are given for stations at latitudes of 32°N, 21°N, 21°S and 37°S during 1971 and for Tahiti (18°S) in 1980. Changes in the neutral atmosphere and in the hmF2 model have minor effects at low latitudes, where the fluxes are larger, but can appreciably alter the results at mid latitudes. Increased recombination due to N2 vibrational excitation produces a large afternoon decrease in NmF2 in summer, near solar maximum, and an increased downward flux. At all stations the day-time flux has a much larger downward component in winter than in summer. Because of the eastward magnetic declination, zonal winds produce opposite effects on the diurnal variations of hmF2, NmF2 and flux in the northern and southern hemispheres. Downward fluxes are largest in the morning in the southern hemisphere and in the late afternoon and evening in the north. At ± 21° latitude, neutral winds have a major effect on the distribution of ionisation from the equatorial fountain. Thus, at the solstices the day-time flow is about 4 times larger in winter than in summer. Averaged over both hemispheres, the total flow at 21° latitude is approximately the same for solstice and equinox conditions. At mid latitudes there is a downwards flux of about 1–2 × 1012 m2 s−1 into the night ionosphere.  相似文献   

2.
3.
A study was made of the dynamics of the main ionospheric trough in the northern and southern hemispheres using data of ion density winter measurements on the Kosmos-900 satellite from 1977 to 1979. Significant longitudinal variations of the trough position have been found which prove to be different in the different hemispheres: in the northern hemisphere they have the shape of a double wave (period 180° longitude) with an amplitude of 4–6° of latitude by both day and night whereas, in the southern hemisphere, they exhibit a simple wave (period 360° longitude) with amplitude of about 6° in the night hours and 10–12° of latitude in the day hours.The analysis of the IMF influence on the trough position by day and night has shown both BZ and BY to affect the shift of the ionospheric trough. It has been found that in the northern hemisphere the vertical and azimuthal IMF components act in opposite phase while in the southern hemisphere the effects of the two components are added. Analytic relationships between the trough shift magnitude and the values of BZ and BY are discussed.  相似文献   

4.
Based on mass spectrometer observations of the satellites Ogo 6 and Esro 4 the long periodic density variations of He, O, N2 and Ar are interpreted to be a result of combined variations of the exospheric temperature and the turbopause height. Only these two parameters are used in the models. Thus in comparison with previous models the number of parameters needed is significantly reduced. This simplification does not diminish the accuracy of the analytic representation of the observations and provides new physical insight into the processes which govern the dynamic behaviour of the neutral thermosphere. The annual variation of the turbopause height is found to cover the height range between 90 and 115 km and is approximately equal for both the Ogo 6 and the Esro 4 data.  相似文献   

5.
To study the behaviour of the electron concentration at the reflection level of very low frequency (VLF) waves, two years of phase and amplitude records of the 12.9 kHz signals emitted from Omega-Argentina (43.20°S; 294.60°E) and received at Tucumán (26.90°S; 294.70°E) have been used. The experimental results are compared with values derived from the International Reference Ionosphere model (IRI-79). The experimental data show a seasonal variation not predicted by the model. Differences are explained in terms of changes of night-time atomic oxygen concentration, which control the electron density profile at the base of the night-time D-region, not taken into account in the IRI model. Values of atomic oxygen necessary to explain VLF data are comparable with published data.  相似文献   

6.
A method of using experimental data on the F1-layer to study variations in the mean thermospheric gas composition is described and a comparison made with modern empirical thermosphere models. Good agreement is obtained for relative variations in atomic oxygen density at 150 km.  相似文献   

7.
Model ionograms are analyzed, corresponding to conditions of disturbances to the diffusive-equilibrium gas density distribution. The results obtained show that the F1-layer clearly demonstrates a response to the dynamics of the vertical thermospheric structure. Features of the model virtual height-frequency curves correspond to the character of experimental ionograms recorded in the case of internal gravity waves.  相似文献   

8.
A technique is described which uses relative changes in Faraday rotation and modulation phase of satellite radio signals to determine the median height of the enhancement (or depletion) in the electron density of the ionosphere. During the post sunrise formation of the F mlayer the incremental layers have a median height of around 210 km (±40) and in the afternoon the decremental median is above the peak at 340 km (±40) on a winter day. A winter night-time enhancement just after midnight appears as a thick layer extending upwards from the peak, with a median height at about 730 km. The method applies to large scale irregularities but not to small, dense, scintillation-causing irregularities for which Faraday and modulation phases do not represent the total electron content.  相似文献   

9.
Estimates of the height of the F-layer peak based on formulations using the ionospheric transmission factor M(3000)F2 are compared with hmF2 derived from the real height analysis of digital ionograms acquired at a mid-latitude station. Based on the analysis of 27 hours of quiet data, our result shows that the M(3000)F2 methods are highly accurate and that the formulation developed by Bradley P. A. and Dudeney J. R., (1973, J. atmos. terr. Phys. 35, 2131) is most accurate.  相似文献   

10.
Observations of neutral winds and temperatures obtained using a FabryPerot interferometer at Beveridge (37°28′S, 145°6′E) have been combined with h'F measurements from ionosondes at Canberra (35°21′S, 149°10′E) and Hobart (42°54′S, 147° 12′E). Data from 16 nights have been used to study the response (height change) of the F2-layer to changes in neutral wind and temperature. The observations have been compared with the ‘servo’ model of Rishbeth. It is found that the ‘night stationary level’ of the F2-layer depends on temperature, with the height changing by (13 ± 6) km per 100K. This agrees well with the prediction of the ‘servo’ model. There is reasonable overall agreement between the observations and the model predictions for the change in height produced by a given meridional wind. However, there is considerable scatter in the individual comparisons due to the approximations used to apply the theory to the observations. In particular, the effect of electric fields on the F2-layer height has been ignored.  相似文献   

11.
The diurnal variations of the seasonal characteristics of sporadic-E occurrence have been studied by analyzing a large data set of ionosonde parameters for two southern hemisphere stations. The seasonal patterns are found to display anomalous short-term variations apparently not associated with solar control or the effects of dynamic meteorology.  相似文献   

12.
For a year of quiet solar-activity level, geomagnetic records from American hemisphere observatories located between about 0° and 30° north geomagnetic latitude were used to compare the annual and semiannual variations of the geomagnetic field associated with three separate contributions: (a) the quiet-day midnight level, MDT; (b) the solar-quiet daily variation, Sq; (c) the quiet-time lunar semidiurnal tidal variation, L(12). Four Fourier spectral constituents (24, 12, 8, 6 h periods) of Sq were individually treated. All three orthogonal elements (H, D and Z) were included in the study.The MDT changes show a dominant semiannual variation having a range of about 7 gammas in H and a dominant annual variation in Z having a range of over 8 gammas. These changes seem to be a seasonal response to the nightside distortions by magnetospheric currents. There is a slow decrease in MDT amplitudes with increasing latitude.The Sq changes follow the patterns expected from an equatorial ionospheric dynamo electrojet current system. The dominant seasonal variations occur in H having a range of over 21 gammas for the 24 h period and over 12 gammas for the 12 h period spectral components. The higher-order components are relatively smaller in size. The Sq(H) amplitudes decrease rapidly with increasing latitude. Magnetospheric contributions to the equatorial Sq must be less than a few per cent of the observed magnitude.The L(12) variation shows the ionospheric electrojet features by the dominance of H and the rapid decrease in amplitude with latitude away from the equator. However, the seasonal variation range of over 7 gammas has a maximum in early February and minimum in late June that is not presently explainable by the known ionospheric conductivity and tidal behavior.  相似文献   

13.
The techniques for estimating hmF2 from M(3000)F2 are reviewed with particular stress put upon those in which the effects of underlying ionization are accounted for by a correction (ΔM) to M(3000)F2, formulated in terms of the ratio foF2/foE(=xE). The simplifying assumptions involved in the three practical implementations (Bradley and Dudeney, 1973; Dudeney, 1974; Bilitza et al., 1979) are emphasised and their consequences investigated quantitatively using a numerical simulation. The factors considered are the dependence upon ymF2, the importance of the underlying layer shape (in particular the significance of the F1-ledge), and the influence of the geomagnetic field.It is demonstrated that the correction technique relies upon ymF2 being a direct polynomial function of hmF2. Analysis of observational data suggests that this relationship holds in practice. Fluctuations in ymF2 about this mean variation are shown to produce only small effects which decrease in magnitude as the amount of underlying ionization increases. The results indicate that underlying layer shape becomes very important when a large amount of underlying ionization is present (xE<2.5). However, the global morphology of the occurrence of the F1-ledge is such that it is invariably present in such circumstances (ignoring the polar regions). Hence, the ionosphere tends to assume a specific profile form for low xE cases. The three implementations are shown all to fortuitously incorporate this behaviour. It is demonstrated that exclusion of the geomagnetic field introduces a very small extra uncertainty dependent upon gyrofrequency and geomagnetic latitude, which decreases as the amount of underlying ionization increases.The three implementations are compared and it is concluded that the Dudeney (1974) scheme gives the best overall performance. The more modern and complex Bilitza et al. (1979) scheme appears to have no performance advantages, whilst containing a sunspot number dependent geomagnetic term whose behaviour is irreconcilible with the numerical simulation. The Dudeney (1974) equation is shown to be accurate to between 4 and 5% at magnetic mid-latitudes. The scope for further refinement is considered but rejected as being unlikely to produce an increase in accuracy commensurate with the effort required.  相似文献   

14.
An empirical model of the variation of electron concentration with height is described which overcomes some limitations found in practice with a previous widely used model (Bradley and Dudeney, 1973). In particular, the new model will generate more realistic variations of electron concentration with real height and virtual height, both including and excluding an F1-ledge. The model has no gradient discontinuities and will reproduce cases in which the F1-ledge does not have a true turning point. The model should prove very valuable for a wide range of propagation problems and for certain aeronomical applications.  相似文献   

15.
Using Intercosmos 19 satellite topside sounding data, a type of complex ionogram for which the lowest frequency of the radio-wave which has passed through the ionosphere is smaller than the greatest frequency of the radio-wave reflected from the ionosphere is considered. (Under normal conditions these frequencies are identically equal.) A mechanism is suggested by which radio-waves transmitted by the satellite propagate over 3000 km in the topside ionosphere in the presence of inclined large-scale plasma structures, which can explain the main features of such ionograms.The space-time distribution of this phenomenon on a global scale is analysed. It is shown that it manifests itself mainly in the local winter, in the daytime and in the Southern Hemisphere. It is hypothesized that these large-scale irregularities are formed in the vicinity of the South Atlantic magnetic anomaly and then move westward.  相似文献   

16.
AE indices have been used to investigate, at times of increased geomagnetic activity, the possibility of significant changes to both spread-F occurerence and hF values for 3 stations in equatorial latitudes. The investigation covered a sunspot minimum period. Furthermore, data for each of these parameters have been considered for both a pre-midnight period (interval A) and a post-midnight period (interval B). The use of the AE indices at 12 different times at 2 h intervals allows the measurement of the delay times, after increased geomagnetic activity, of any significant changes in the parameters being investigated.The results show that for interval A significant suppressions of spread-F occurrence are recorded at delay times of approximately 3 h and 9 h. These delays correspond to enhanced geomagnetic activity at local times of 1800 and 1200, respectively. Also, for interval A the hF variations suggest that hF is suppressed at times of spread-F suppression. For interval B spread-F occurrence seems to be controlled by two opposing effects. For several hours after enhanced geomagnetic activity spread-F occurrence increases significantly, followed by a sharp decline culminating in suppressed occurrence, again related to increased geomagnetic activity at 1800 local time for the maximum effect. Also, for interval B hF values lift abruptly a few hours after enhanced geomagnetic activity, followed by a gradual decline when delays of up to 20 h are considered. Further work on these delays may allow reliable short-term forecasting of some ionospheric behaviour in equatorial regions.  相似文献   

17.
Stratosphere and mesosphere temperatures were measured during four winter months (November–February) at high latitudes (Andøya, ESRANGE) by means of numerous rocket flights during the Energy Budget Campaign 1980 and the MAP/WINE Campaign 1983–1984. They are compared to ground-based OH1 measurements and SSU satellite data. The atmosphere was found to be very active, with several minor and one major stratospheric warming occurring. A harmonic analysis of the temperature oscillations observed is performed and found to be suitable to model the atmospheric disturbances (warmings) to a large extent by superposition of waves with appropriate periods. These periods are of the order of several days and weeks and are thus similar to those of planetary waves. Stratospheric warmings tend to be correlated with mesospheric coolings, and vice versa. This is reproduced by the model, giving details of the phase relationships as they depend on altitude. These are found to be more complicated than just an anticorrelation of the altitude regimes. Strong phase changes occur in narrow altitude layers, with oscillation amplitudes being very small at these places. These ‘quiet layers’ are frequent phenomena and are independently found in the data sets of the two campaigns. They are tentatively interpreted as the nodes of standing waves.The time development of temperature altitude profiles shows strong variations that lead to peculiar features, such as a split stratopause or a near-adiabatic lapse rate in the mesosphere on occasion. The superposition model is able to reproduce these features, too. On one occasion it even shows super-adiabatic temperature gradients in the lower mesosphere for several days. Though this should be taken as an artifact, it nevertheless suggests a considerable contribution of the long period waves to atmospheric turbulence.The many rocket data are also used to determine monthly mean temperature profiles. These are compared to reference atmospheres recently developed for the CIRA (Barnett and Corney, 1985; Groves, 1985). Fair agreement is found, which is much better than with CIRA (1972). This is not true for February 1984, because of the major warming that occurred late in that month. Before this warming took place, atmospheric preconditioning appears to have been present for more than two months.  相似文献   

18.
Measurements of ion temperature, ion-neutral collision frequency and ion drift in the E-region from the period December 1984 to November 1985 are used to derive neutral temperatures, densities and meridional winds in the altitude intervals 92–120 km, 92–105 km and 92–120 km, respectively. Altitude profiles of temperature and density and their seasonal variations are compared with the CIRA 1972 and MSIS 1983 models and the effects of geomagnetic activity are demonstrated. Semi-diurnal tidal variations in all three parameters are derived and the comparison with lower latitude measurements is discussed.  相似文献   

19.
Since the 1982/1983 winter, the UCL group, in collaboration with the Swedish Institute for Space Physics (previously Kiruna Geophysical Institute), has operated a Doppler imaging system at the high latitude station of Kiruna (67°N, 22°E). The Doppler imaging system is an imaging Fabry-Perot interferometer of 13.2 cm aperture. This instrument has been operated on a ‘campaign’ basis for mapping thermospheric winds using the OI emission at 630 nm (240 km altitude) from a region up to about 400 km radius about Kiruna. In November 1986, the performance of this wide-field Doppler imaging system was augmented by improvements to the detector and all-sky optics. We present data from December 1986, obtained during periods with both clear skies and active auroral and geomagnetic conditions. Maps of the neutral wind flow within the auororal oval during disturbed conditions and near magnetic midnight show continuous and rapid changes of thermospheric winds. The typical scale sizes of eddies observed within the mean flow around magnetic midnight are 100–300 km, with fluctuations at all time scales resolved by the 10 min between successive Doppler images. The local and short period fluctuations appear to be a filtered response of the thermosphere to rapid local variations of the convection and precipitation patterns, within a background of global scale changes  相似文献   

20.
A simple model of the equatorial electrojet is used to try to reproduce observed current density profiles and it is found that an increase in neutral density is required. The effects of neutral density changes of various kinds are investigated. Changes in the electron density profile due to the j × B force are found to be fairly small and, in the cases studied here, are decreases at all heights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号