首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Measurements of ionization sources, ionization profiles and minor atmospheric constituents were conducted during the 26 February 1979 solar eclipse above Red Lake, Canada. A model of the lower thermosphere has developed to describe the D- and E-regions of the ionosphere for this case with the model being guided by the measurements. During the eclipse a rather intense particle precipitation event was in progress. For this reason, an auroral deposition code was coupled to a chemical-kinetics code to calculate degraded primary and secondary electron fluxes, ionization rates, positive ion and electron densities. The model was calibrated with the experimental measurements of electron flux below 100 km and electron density between 70 and 150 km. This calculation not only satisfactorily described the ionization in the E-region but also the gross electron density characteristics of the D-region. Bursts in the observed electron flux were also simulated with the model to give electron density profiles that were remarkably consistent with small perturbations seen in the electron density measurements.  相似文献   

3.
Nitric oxide (NO) concentrations have been determined from the analysis of positive ion composition data obtained by AFGL for eclipse and post-eclipse conditions near Red Lake, Canada. Values of about 3 × 108 cm−3 for 105–110 km and about 3 × 107 cm−3 for 90 km have been established. A residual ion-pair production rate of about 50 cm−3 s−1 is estimated for eclipse totality at 110 km. A factor of two uncertainty is thought to be appropriate for all deduced values. The calculated NO concentrations appear to be within the range of typical variations for this season (late winter) and latitude (51°N).  相似文献   

4.
Two rockets bearing quadrupole mass spectrometers capable of measuring both positive and negative ion composition were launched from Red Lake, Canada, during the solar eclipse. Both instruments had liquid helium cryopumps and shock-attaching conical samplers. The payloads also contained two Gerdien condensers to measure total positive and negative ion concentrations and ion mobilities. Attitude control systems aligned the payloads with the velocity vector throughout ascent and descent. The first rocket was launched so that the D-region was in darkness 35 ± 8 s on the upleg and about 150 ± 15 s on the downleg for the study of ionospheric decay processes. The second rocket was fired after totality into 75% solar illumination for the study of ionospheric recovery. The positive ion composition above 105 km exhibited a strongly increasing NO+/O2+ ratio with time after second contact due to O2+ charge transfer with NO and a sharply diminished ionization rate. However, in both nights, the ionization below 105 km was created mainly by energetic particle deposition as exemplified by the increased ion concentrations and the composition signatures of a particle event: asignificant enhancement of O2+ below 105 km and large amounts of H5O2+ ions in the D-region which result from the O2+ clustering scheme. H5O2 was the major ion in the upper D-region while H7O+3, H9O4+ and H5O2+ were dominant ions at lower altitudes. Numerous minor species were also detected. The negative ion distributions in both flights exhibited a distinct shelf at 83 ± 2 km, decreasing by more than an order of magnitude by 90 km and with minima near 75 km. In the 75–90 km range, a significant percentage of the negative ions had masses exceeding 160 a.m.u. Comparisons are made with prior negative ion measurements during similar daytime auroral zone absorption (AZA) events. Two striking characteristics of the precipitating particles were apparent from these and past observations in daytime AZA events: there is a near absence of low energy electrons capable of ionizing above about 105 km and there is'a significant spatial and/or temporal variability in the electron flux. This paper is devoted principally to a presentation of the ion composition measurements and associated uncertainties.  相似文献   

5.
6.
Temperature and wind behavior observed during the February 1979 solar eclipse shows significant change immediately following and up to one hour after totality. Statospheric and mesospheric data obtained from Fort Churchill, Manitoba, indicate quite clearly a cooling trend between 50–60 kilometers with the maximum temperature decrease of approximately 10°C evident above 52 kilometers. This temperature perturbation was accompanied by an amplification of the meridional wind speed of 20–30 mps near 60 kilometers. These results are essentially in agreement with those obtained at Wallops Island during the March 1970 solar eclipse. Although the stratosphere was under the large-scale influence of a stratospheric warming, the short-term perturbations caused by radiative changes as a result of the solar eclipse did not appear to be masked.  相似文献   

7.
The LF phase retardation induced by the total solar eclipse of Monday, 26 February 1979 and observed by monitoring the 12.5 km path length 60 kHz WWVB transmission from Fort Collins, U.S.A., to Calgary, Canada, as the path of totality at the 80 km height of the D-layer swept over Billings, Montana, U.S.A., near the midpoint of this transmission path is reported.  相似文献   

8.
Observations by the HF Doppier technique of the ionospheric effects of the 16 February 1980 solar eclipse in Africa are presented. Some oscillations which are detected at two stations can be attributed to a travelling coherent structure. Its characteristics are consistent with a gravity wave generated by the eclipse.  相似文献   

9.
10.
11.
Observations on the Faraday rotation of a transionospheric VHF signal obtained from a network of four stations near the path of totality during the total solar eclipse of 16 February 1980 are reported. A small decrease of 3–4% in the total ionization has been obtained around the time of totality. Absence of any periodic structure following the eclipse indicates that the TIDs are not of significant amplitude in the present case to be detected by the Faraday rotation technique.  相似文献   

12.
The solar eclipse of 26 February 1979 was observed from Red Lake, Canada, (52 °N, 91 °W) where totality occurred at about 1053 local time. Several research groups and government agencies participated in an extensive ground- and rocket-based observational program directed at the middle atmosphere. At the time of the eclipse, an extensive geomagnetic storm was in progress and the middle atmosphere was undergoing temperature and circulation changes associated with a stratospheric warming. Concurrent observations of atmospheric constituents, solar radiation, electron flux and other middle atmosphere parameters were obtained as inputs for a D-region predictive chemical computer code, DAIRCHEM, tailored to eclipse conditions. Ion pair production rates were computed by an E-region infrared radiance model and were used as necessary source function input values for DAIRCHEM computations. The computations yielded predictions of electron and total positive ion densities about totality. The positive ion measurements of a supersonic Gerdien condenser and a subsonic blunt probe during the eclipse were in agreement with the model computations and provided normalizing summations of total positive ions for the interpretation of mass spectrometer measurements. The chemical computer code identified principal routes for increase and removal of key species such as O2+, NO+, hydrated clusters and negative ions. The dominant precursor ion for pair production hydrates was O2+ and the chemistry was characteristic of the disturbed D-region.  相似文献   

13.
Measurements of electron concentration in the D- and lower E-regions of the ionosphere are reported for seven rocket flights from South Uist, Scotland, in April 1973. They took place during a 12-hour period starting 30 hours after the main phase of a severe geomagnetic storm. The principal feature of the results is that the electron concentrations below 85 km varied between 4 and 10 times the concentrations found on normal days. The variability was correlated with changes in radio wave absorption.The observed electron concentrations are compared with results of other workers for storm conditions and in particular with the model of Spjeldvik and Thorne (1975), and are found to be in reasonable agreement.The possibility of changes in positive ion composition occurring during the post-storm period is inferred.  相似文献   

14.
Electron densities in the D-region have been observed with EISCAT during energetic electron precipitation events. Sample results are presented which demonstrate the value of the technique in studying variations of electron density with fine temporal and spatial resolution. Different types of absorption event can be characterized in terms of the changes in the incoming electron spectrum inferred from profiles of electron density. We contrast the D-region behaviour of night- and day-time events in terms of precipitating spectrum and absorption profile. A softening of the electron spectrum during the course of a morning event is clearly seen.  相似文献   

15.
A model for the negative-ion composition of the D-region is constructed, based on gas-phase reactions and photodissociation and photodetachment processes. The height distributions of negative-ion species, electrons and total positive ions for day-time and night-time are examined using time-dependent solutions of their continuity equations which incorporate simultaneous solutions for the minor neutral constituents involved. A distinction is drawn between the two isomers of NO3 and particular attention is paid to the influence of possible chemical and photodestruction of the more stable form of this ion.  相似文献   

16.
The effects of the solar eclipse of 26 February 1979 on the ionosphere were measured using differential Doppler techniques. Nayy navigation satellite passes were monitored at 12 sites located across the North American continent. These data yield a measurement of the vertical columnar electron content along a north-south line. Different sites monitoring the same pass provide simultaneous observations of ionospheric variations along different longitude lines. Two satellite passes occurred during or just after the eclipse. These data show a shoulderjust northward of the umbra region and a trough just behind the umbra containing large horizontal gradients. This sharp trough recovered quickly with a half-life of about 10 min.  相似文献   

17.
Radio-wave absorption data from sixteen mid-latitude stations distributed in longitude, together with magnetic-field disturbance parameters and satellite measurements of thermal radiances, have been examined for the winter of 1976–1977. It has been demonstrated that D-region disturbances at mid-latitudes in winter can be associated with both the delayed effects of geomagnetic storms and with changes in mesospheric temperature.  相似文献   

18.
An intense solar proton event causing enhanced ionization in the ionospheric D-region occurred on 12 August 1989. The event was partially observed during three successive nights by the EISCAT UHF incoherent scatter radar at Ramfjordmoen near Tromsa, Norway. Ion production rates calculated from GOES-7 satellite measurements of proton flux and a detailed ion chemistry model of the D-region are used together with the radar data to deduce electron concentration, negative ion to electron concentration ratio, mean ion mass and neutral temperature in the height region from 70 to 90 km, at selected times which correspond to the maximum and minimum solar elevations occurring during the radar observations. The quantitative interpretation of EISCAT data as physical parameters is discussed. The obtained temperature values are compared with nearly simultaneous temperature measurements at Andøya based on lidar technique.  相似文献   

19.
Electron density profiles in the night-time auroral ionosphere were obtained with the incoherent-scatter radar at Chatanika, Alaska, during short duration precipitation events characterized by riometer data as spike events. The measurements show exceptionally large electron densities in the D-region during spike events, the electron density typically exceeding 106 cm3 at 90 km altitude for a short time. The existence of a steep horizontal gradient, particularly on the poleward edge of the event, is inferred. The altitude and thickness of the absorbing layer are deduced. It is shown that 20–40 keV electrons make the greatest contribution to an absorption spike and that the spectrum of electrons producing such an event is probably softer than that producing a more slowly varying absorption peak. These absorption layers are too high for their altitudes to be measured by the technique of multi-frequency riometry.  相似文献   

20.
We recorded shadow bands just before and just after the total phase of the solar eclipse of 3 November 1994. The recordings were made using two broad-band silicon photodiodes separated by 100 mm. They were mounted on a plate that faced the eclipsed Sun, which was at an altitude of 32.4° as seen from our observing site 4500 m above sea level between Putre and Lake Chungara in northern Chile. The irradiance fluctuations associated with the shadow bands were around 0.008 W m−2 rms on a background of about 2–8 W m−2. The cross-correlation function indicates that the shadow bands were moving at a speed of about 1.8 m s−1 perpendicular to their extent. The power spectral density functions are in accord with the shadow band theory of Codona (1986). We carried out a similar experiment in Baja California during the eclipse of 11 July 1991. In spite of teh considerable differences between the two circumstances, our results on the two occasions are broadly similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号