首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ABSTRACT

The analysis of the shaking table test of a 3-wall stone masonry structure performed with a discrete element model is presented. The numerical model, created with the code 3DEC, employed a rigid block representation and a Mohr-Coulomb joint model. Joint stiffness calibration to match the experimental natural frequencies is discussed, as well as the boundary conditions to simulate the shake table. Comparisons are made with the measured displacements at key locations, and the modes of deformation and fracture of the walls. The DEM model was able to reproduce important features of the shaking table tests. The experimental deformation and near collapse patterns were clearly identifiable in the numerical simulations, which produced displacements within the observed orders of magnitude, for the various levels of excitation.  相似文献   

2.
ABSTRACT

Kinetic analysis methods based on linear and nonlinear rigid body dynamics are used to evaluate earthquake safety of masonry structures. In this study, the formulas used to calculate the in-plane and out-of-plane load capacities of masonry load-bearing walls were evaluated and a procedure based on rigid body mechanism was proposed to calculate the out-of-plane load capacities of the walls of Ottoman period masonry mosques. New aspects of the method with respect to existing formulations is the inclusion of dynamic axial load and definition of the collapse limit spectral acceleration on the overturning wall. The calculated capacities of the mosque and individual walls were compared with the results of nonlinear pushover analysis and time history analyses performed under 1.0 and 0.5 scaled forms of nine different 3-component ground motion records. It was displayed that the seismic load capacity estimated by the proposed method is very close to the values calculated by pushover and time history analyses. The method was developed on Lala Pasha Mosque, and the reliability and applicability of the proposed methodology is verified on a different historical masonry mosque in comparison to finite element analyses results.  相似文献   

3.
4.
ABSTRACT

This article presents numerical simulations of two full-scale masonry structures which were tested on the shaking table within the scope of the workshop “Methods and challenges on the out-of-plane assessment of existing masonry buildings”. The numerical models have been developed on the basis of the blind-prediction models which have been improved after the publication of the test results. The solution procedure is divided into two steps with separate numerical simulations for each one. In the first step the collapse mechanism of the structure is determined by means of pushover analysis using a continuum, plasticity-based model. In the second step the dynamic response of the structure is simulated using a multibody model approach and frictional contacts. Results of the tests show reasonable, yet far from perfect predictive capabilities of the used numerical methods.  相似文献   

5.
The development of alternative solutions for precast concrete buildings based on jointed ductile connections has introduced innovative concepts in the design of lateral-load resisting frame and wall systems. Particularly efficient is the hybrid system, where precast elements are connected via post-tensioning techniques and self-centring and energy dissipating properties are adequately combined to achieve the target maximum displacement with negligible residual displacements. In this contribution, the concept of hybrid system is extended to bridges as a viable and efficient solution for an improved seismic performance when compared with monolithic counterparts. Critical discussion on the cyclic behaviour of hybrid systems, highlighting the most significant parameters governing the response, is carried out.

The concept of a flexible seismic design (displacement-based) of hybrid bridge piers and systems is proposed and its reliability confirmed by quasi-static cyclic (push-pull) and nonlinear time-history analyses based on lumped plasticity numerical models.  相似文献   

6.
Displacements experienced by many historic masonry structures concentrate at masonry joints and can be large before collapse is a concern, making modeling of stability using discrete element modeling (DEM) particularly suitable. In this study, masonry groin vault and arch models with several geometries were subjected to horizontal and vertical support displacements using DEM. Support movements were applied in a quasi-static manner to simulate the support settlement process. Displacements at collapse and at the point when the first block fell from the vault were recorded. Block separation and mechanisms were also noted during the simulations. A two-dimensional (2D) analytical model using thrust line analysis was developed to help evaluate the DEM results. In general, the displacements at first block fall were relatively large but significantly less than those at collapse. The groin vaults and arches exhibited significantly higher capacity to sustain vertical support displacement compared to horizontal displacements. For many geometries, the DEM collapse displacements of the groin vaults compared reasonably well to similar arches, indicating that the displacement capacity of groin vaults can be reasonably estimated using 2D simplifications. However, for certain geometries, three-dimensional effects were found to significantly affect displacement capacity.  相似文献   

7.
ABSTRACT

The unreinforced masonry (URM) buildings designed to be conforming with the Italian building code, as illustrated in the companion paper, were analyzed by performing time-history analyses on models realized using an equivalent frame approach and by adopting two different constitutive laws. Both the effect of record-to-record variability and of epistemic and aleatory uncertainties in modelling were explored. The achieved results constitute the basis for the evaluation of the risk level implicit in Italian code-conforming buildings. Two main performance conditions are considered, namely usability-preventing damage and global collapse limit states.  相似文献   

8.
ABSTRACT

Prestressed precast concrete shear wall (PPCW) is a new kind of shear wall utilizing a combination of unbonded post-tensioning steel and mild steel for flexural resistance across horizontal joints. A simple procedure of direct displacement-based design approach for PPCW based on concept of inelastic design spectra is proposed. Section design is then carried out according to base overturning moment. A detailed design example demonstrating a step-by-step application of the design procedure is also provided. Nonlinear time-history analysis verified that this approach is applicable to control the target displacement to the performance acceptable limit.  相似文献   

9.
ABSTRACT

Earthquakes cause severe damage to masonry structures due to inertial forces acting in the normal direction to the plane of the walls. The out-of-plane behavior of masonry walls is complex and depends on several parameters, such as material and geometric properties of walls, connections between structural elements, the characteristics of the input motions, among others. Different analytical methods and advanced numerical modeling are usually used for evaluating the out-of-plane behavior of masonry structures. Furthermore, different types of structural analysis can be adopted for this complex behavior, such as limit analysis, pushover, or nonlinear dynamic analysis.

Aiming to evaluate the capabilities of different approaches to similar problems, blind predictions were made using different approaches. For this purpose, two idealized structures were tested on a shaking table and several experts on masonry structures were invited to present blind predictions on the response of the structures, aiming at evaluating the available tools for the out-of-plane assessment of masonry structures. This article presents the results of the blind test predictions and the comparison with the experimental results, namely in terms of formed collapsed mechanisms and control outputs (PGA or maximum displacements), taking into account the selected tools to perform the analysis.  相似文献   

10.
Three different Nonlinear Static Methods (NSM's), based on pushover analysis, are applied to a 3-story, 2-bay, RC frame. They are (i) the Capacity Spectrum Method (CSM), described in ATC-40, (ii) the Displacement Coefficient Method (DCM), presented in FEMA-273 and further developed in FEMA 356, and (iii) the N2 Method, implemented in the Eurocode 8. Pushover analyses are conducted with DRAIN-3DX by using four different lateral force distributions, according to the acceleration profile assumed along the height of the structure: uniform, triangular, modal-proportional, and multimodal fully adaptive. In the numerical model, RC members are modeled as fiber elements.

The numerical predictions of each method are compared to the experimental results of the shaking table tests carried out on two similar 1:3.3-scale structural models, with and without infilled masonry panels, respectively. The comparison is made in terms of maximum story displacements, interstory drifts, and shear forces. All the NSM's are found to predict with adequate accuracy the maximum seismic response of the structure, provided that the associated parameters are properly estimated. The lateral load pattern, instead, is found to little affect the accuracy of the results for the three-story model considered, even if collapse occurs with a soft story mechanism.  相似文献   

11.
The primary focus of a structural shake table system is the accurate reproduction of acceleration records for testing. However, many systems deliver variable and less than optimal performance, particularly when reproducing large near-field seismic events that require extreme table performance. Improved identification and control methods are developed for large hydraulic servo-actuated shake table systems that can exhibit unacceptable tracking response for large, near-field seismic testing. The research is presented in the context of a 5-tonne shake table facility at the University of Canterbury that is of typical design. The system is identified using a frequency response approach that accounts for the actual magnitudes and frequencies of motion encountered in seismic testing. The models and methods developed are experimentally verified and the impact of different feedback variables such as acceleration, velocity and displacement are examined.

The methods show that shake table control in testing large near-field seismic events is often a trade off between accurate tracking and nonlinear velocity saturation of the hydraulic valves that can result in severe acceleration spikes. Control methods are developed to improve performance and include both acceleration and displacement feedback to reduce the acceleration spikes, and record modification, where the reference signal is modified to conform to the shake table's operational parameters. Results show record modification gives exact tracking for near-field ground motions, and optimal system response for reference signals with velocity components greater then the system capabilities. Overall, the research presents a methodology for simple effective identification, modelling, diagnosis and control of structural shake table systems that can be readily generalised and applied to any similar facility.  相似文献   

12.
Abstract

Seismic assessment of existing reinforced concrete frame and shear wall buildings is discussed. Building on an earlier preliminary assessment procedure incorporating aspects of capacity design into a systems approach for assessment, suggestions are made towards a displacement-based, rather than forced-based, approach to determining available seismic capacity. Based on results from recent experimental programs, procedures are proposed for assessing member strength including column and beam-column joint shear-strength, that result in less conservative estimates of performance than would result from application of existing code rules.  相似文献   

13.
ABSTRACT

A large number of buildings all around the world are constructed of unreinforced masonry. These structures do not act well during earthquakes because of their vulnerable behavior. In last two decades, fiber-reinforced polymers (FRPs) has been used widely in seismic rehabilitation and strengthening unreinforced concrete and masonry structures. One important issue in using FRP composites for strengthening masonry walls is the inopportune debonding of composites from the wall surface; thus, in this article new methods are proposed to further delay the mentioned debonding issue. For this purpose, 13 masonry panels with 100x870x870 mm dimension are strengthened by using carbon and glass FRPs (CFRPs and GFRPs). A variety of strengthening methods such as surface preparation, boring, grooving, nailing, and plaster are used to mount FRP composites to the walls. For each specimen subjected to diagonal compression test, the loading level along with tensile and compressive diagonal displacements are evaluated. In order to assess the effect of FRP composites, four unreinforced masonry walls are tested as well. The results show 110% increase in ductility index of reinforced specimens compared to the unreinforced ones.  相似文献   

14.
ABSTRACT

Observations after strong earthquakes show that out-of-plane failure of unreinforced masonry elements probably constitutes the most serious life-safety hazard for this type of construction. Existing unreinforced masonry buildings tend to be more vulnerable than new buildings, not only because they have been designed to little or no seismic loading requirements, but also because connections among load-bearing walls and with horizontal structures are not always adequate. Consequently, several types of mechanisms can be activated due to separation from the rest of the construction. Even when connections are effective, out-of-plane failure can be induced by excessive vertical and/or horizontal slenderness of walls (length/thickness ratio). The awareness of such vulnerability has encouraged research in the field, which is summarized in this article. An outline of past research on force-based and displacement-based assessment is given and their translation into international codes is summarized. Strong and weak points of codified assessment procedures are presented through a comparison with parametric nonlinear dynamic analyses of three recurring out-of-plane mechanisms. The assessment strategies are marked by substantial scatter, which can be reduced through an energy-based assessment.  相似文献   

15.
ABSTRACT

This article presents a study on the out-of-plane response of two masonry structures without box behavior tested in a shaking table. Two numerical approaches were defined for the evaluation, namely macro-modeling and simplified micro-modeling. As a first step of this study, static nonlinear analyses were performed for the macro models in order to assess the out-of-plane response of masonry structures due to incremental loading. For these analyses, mesh size and material model dependency was discussed. Subsequently, dynamic nonlinear analyses with time integration were carried out, aiming at evaluating the collapse mechanism and at comparing it to the experimental response. Finally, nonlinear static and dynamic analyses were also performed for the simplified micro models. It was observed that these numerical techniques correctly simulate the in-plane response. The collapse mechanism of the stone masonry model is in good agreement with the experimental response. However, there are some inconsistencies regarding the out-of-plane behavior of the brick masonry model, which required further validation.  相似文献   

16.
ABSTRACT

Although many experimental tests and numerical models are available in the literature, the numerical simulation of the seismic response of existing masonry buildings is still a challenging problem. While the nonlinear behavior of masonry structures is reasonably predictable when the out-of-plane behavior can be considered inhibited, when the in-plane and out-of-plane responses coexist and interact, simplified models seem unable to provide reliable numerical predictions. In this article, taking advantage of the experimental tests carried out in a shaking table on two masonry prototypes at LNEC, a macro-element approach is applied for the numerical simulations of their nonlinear response. The adopted approach allows simulating the nonlinear behavior of masonry structures considering the in-plane and out-of-plane responses. Since it is based on a simple mechanical scheme, explicitly oriented to representing the main failure mechanisms of masonry, its computational cost is greatly reduced with respect to rigorous solutions, namely nonlinear FEM approaches. Two modeling strategies are adopted, namely a regular mesh independent from the real texture of the prototypes and a detailed one coherent with the units disposal. The numerical results are discussed and the correlation between the nonlinear static analyses and the dynamic response is provided.  相似文献   

17.
In this paper, an innovative displacement-based adaptive pushover procedure, whereby a set of laterally applied displacements, rather than forces, is monotonically applied to the structure, is presented. The integrity of the analysis algorithm is verified through an extensive comparative study involving static and dynamic nonlinear analysis of 12 rein-forced concrete buildings subjected to four diverse acceleration records. It is shown that the new approach manages to provide much improved response predictions, throughout the entire deformation range, in comparison to those obtained by force-based methods. In addition, the proposed algorithm proved to be numerically stable, even in the highly inelastic region, whereas the additional modelling and computational effort, with respect to conventional pushover procedures, is negligible. This novel adaptive pushover method is therefore shown to constitute an appealing displacement-based tool for structural assessment, fully in line with the recently introduced deformation- and performance-oriented trends in the field of earthquake engineering.  相似文献   

18.
This study presents a new strategy for shake table control that uses direct acceleration feedback without need for displacement feedback. To ensure stability against table drift, force feedback is incorporated. The proposed control strategy was experimentally validated using the shake table at the Johns Hopkins University. Experimental results showed that the proposed control strategy produced more accurate acceleration tracking than conventional displacement-controlled strategies. This article provides the control architecture, details of the controller design, and experimental results. Furthermore, the impact of input errors in shake table testing on the structural response is also discussed.  相似文献   

19.
Past earthquakes have shown the high vulnerability of existing masonry buildings, particularly to out-of-plane local collapse mechanisms. Such mechanisms can be prevented if façades are restrained by tie rods improving the connections to perpendiculars walls. Whereas in the past only static models have been proposed, herein the nonlinear equation of motion of a monolithic wall restrained by a tie rod is presented. The façade, resting on a foundation and adjacent to transverse walls, rotates only around one base pivot and has one degree of freedom. Its thickness is explicitly accounted for and the tie rod is modeled as a linear elastic—perfectly plastic spring, with limited displacement capacity. The model is used to investigate the response to variations of wall geometry (height/thickness ratio, thickness), tie rod features (vertical position, length, prestress level), and material characteristics (elastic modulus, ultimate elongation, yield strength) typical of historical iron. The most relevant parameter is the steel strength, whereas other characteristics play minor roles allowing to recommend reduced values for pre-tensioning forces. The force-based procedure customary in Italy for tie design is reasonably safe and involves protection also against collapse, although probably not enough as desirable.  相似文献   

20.
ABSTRACT

Despite the high vulnerability of historic structures to earthquakes, the approaches for evaluating seismic demand and capacity still appear inadequate and there is little consensus on the most appropriate assessment methods to use. To develop an improved knowledge on the seismic behavior of masonry structures and the reliability of analysis tools, two real-scale specimens were tested on a shake table, and several experts were invited to foresee failure mechanism and seismic capacity within a blind prediction test. Once unveiled, experimental results were simulated using multi-block dynamics, finite elements, or discrete elements. This article gathers the lessons learned and identifies issues requiring further attention. A combination of engineering judgment and numerical models may help to identify the collapse mechanism, which is as essential as it is challenging for the seismic assessment. To this purpose, discrete modeling approaches may lead to more reliable results than continuous ones. Even when the correct mechanism is identified, estimating the seismic capacity remains difficult, due to the complexity and randomness of the seismic response, and to the sensitivity of numerical tools to input variables. Simplified approaches based on rigid body dynamics, despite the considerable experience and engineering judgment required, provide as good results as do advanced simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号