首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Poropat, S.F., Nair, J.P., Syme, C.E., Mannion, P.D., Upchurch, P., Hocknull, S.A., Cook, A.G., Tischler, T.R. &; Holland, T. XX.XXXX. 2017. Reappraisal of Austrosaurus mckillopi Longman, 1933 Longman, H.A., 1933. A new dinosaur from the Queensland Cretaceous. Memoirs of the Queensland Museum 10, 131144. [Google Scholar] from the Allaru Mudstone of Queensland, Australia’s first named Cretaceous sauropod dinosaur. Alcheringa 41, 543–580. ISSN 0311-5518

Austrosaurus mckillopi was the first Cretaceous sauropod reported from Australia, and the first Cretaceous dinosaur reported from Queensland (northeast Australia). This sauropod taxon was established on the basis of several fragmentary presacral vertebrae (QM F2316) derived from the uppermost Lower Cretaceous (upper Albian) Allaru Mudstone, at a locality situated 77 km west-northwest of Richmond, Queensland. Prior to its rediscovery in 2014, the type site was considered lost after failed attempts to relocate it in the 1970s. Excavations at the site in 2014 and 2015 led to the recovery of several partial dorsal ribs and fragments of presacral vertebrae, all of which clearly pertained to a single sauropod dinosaur. The discovery of new material of the type individual of Austrosaurus mckillopi, in tandem with a reassessment of the material collected in the 1930s, has facilitated the rearticulation of the specimen. The resultant vertebral series comprises six presacral vertebrae—the posteriormost cervical and five anteriormost dorsals—in association with five left dorsal ribs and one right one. The fragmentary nature of the type specimen has historically hindered assessments of the phylogenetic affinities of Austrosaurus, as has the fact that these evaluations were often based on a subset of the type material. The reappraisal of the type series of Austrosaurus presented herein, on the basis of both external morphology and internal morphology visualized through CT data, validates it as a diagnostic titanosauriform taxon, tentatively placed in Somphospondyli, and characterized by the possession of an accessory lateral pneumatic foramen on dorsal vertebra I (a feature that appears to be autapomorphic) and by the presence of a robust ventral mid-line ridge on the centra of dorsal vertebrae I and II. The interpretation of the anteriormost preserved vertebra in Austrosaurus as a posterior cervical has also prompted the re-evaluation of an isolated, partial, posterior cervical vertebra (QM F6142, the ‘Hughenden sauropod’) from the upper Albian Toolebuc Formation (which underlies the Allaru Mudstone). Although this vertebra preserves an apparent unique character of its own (a spinopostzygapophyseal lamina fossa), it is not able to be referred unequivocally to Austrosaurus and is retained as Titanosauriformes indet. Austrosaurus mckillopi is one of the oldest known sauropods from the Australian Cretaceous based on skeletal remains and potentially provides phylogenetic and/or palaeobiogeographic context for later taxa such as Wintonotitan wattsi, Diamantinasaurus matildae and Savannasaurus elliottorum.

Stephen F. Poropat* [; ] Department of Chemistry and Biotechnology, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia; Jay P. Nair [; ] School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; Caitlin E. Syme [] School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; Philip D. Mannion [] Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; Paul Upchurch [] Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK; Scott A. Hocknull [] Geosciences, Queensland Museum, 122 Gerler Rd, Hendra, Queensland 4011, Australia; Alex G. Cook [] School of Earth Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia; Travis R. Tischler [] Australian Age of Dinosaurs Museum of Natural History, Lot 1 Dinosaur Drive, PO Box 408, Winton, Queensland 4735, Australia; Timothy Holland [] Kronosaurus Korner, 91 Goldring St, Richmond, Queensland 4822, Australia. *Also affiliated with: Australian Age of Dinosaurs Museum of Natural History, Lot 1 Dinosaur Drive, PO Box 408, Winton, Queensland 4735, Australia.  相似文献   

2.
Chamberlain, P.M., Travouillon, K.J., Archer, M. & Hand, S.J., November 2015. Kutjamarcoot brevirostrum gen. et sp. nov., a new short-snouted, early Miocene bandicoot (Marsupialia: Peramelemorphia) from the Kutjamarpu Local Fauna (Wipajiri Formation) in South Australia. Alcheringa 40, XX–XX. ISSN 0311-5518.

A new bandicoot species, Kutjamarcoot brevirostrum gen. et sp. nov. (Peramelemorphia), is described here from the Leaf Locality, Kutjamarpu Local Fauna (LF), Wipajiri Formation (South Australia). The age of the fossil deposit is interpreted as early Miocene on the basis of biocorrelation between multiple species in the Kutjamarpu LF and local faunas from the Riversleigh World Heritage Area (WHA). Kutjamarcoot brevirostrum is represented by isolated teeth and three partial dentaries and appears to have been short-snouted with an estimated mass of 920 g. Phylogenetic analyses place K. brevirostrum in a clade with extant Australian bandicoots and the extinct Madju, but potentially exclude the extant New Guinean bandicoots. Morphometric analysis infers close similarity between K. brevirostrum and species of Galadi in both size and rostral length. They, thus, potentially occupied compatible ecological niches with competitive exclusion perhaps explaining geographical segregation between these broadly coeval lineages.

Philippa M. Chamberlain [], School of Earth Sciences, University of Queensland, St Lucia, Queensland 4072, Australia; Kenny J. Travouillon [; ], Western Australian Museum, Locked Bag 49, Welshpool DC, WA, 6986, and School of Earth Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia; Michael Archer [] and Suzanne J. Hand [], School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales, 2052, Australia.  相似文献   


3.
Rozefelds, A.C., Dettmann, M.E., Clifford, H.T. & Lewis, D., August 2015. Macrofossil evidence of early sporophyte stages of a new genus of water fern Tecaropteris (Ceratopteridoideae: Pteridaceae) from the Paleogene Redbank Plains Formation, southeast Queensland, Australia. Alcheringa 39,. ISSN 0311-5518.

Water fern foliage is described from the Paleogene Redbank Plains Formation at Dinmore in southeast Queensland. The material, which is based upon leaf impressions, records early sporophyte growth stages. The specimens occur at discrete levels in clay pits at Dinmore, and the different leaf stages present suggest that they represent colonies of young submerged plants, mats of floating leaves, or a mixed assemblage of both. The leaf material closely matches the range of variation evident in young sporophytes of Ceratopteris Brongn., but in the complete absence of Cenozoic fossils of the spore genus Magnastriatites Germeraad, Hopping & Muller emend. Dettmann & Clifford from mainland Australia, which are the fossil spores of this genus, it is referred to a new genus, Tecaropteris. The record of ceratopterid-like ferns adds significantly to our limited knowledge of Cenozoic freshwater plants from Australia. The geoheritage significance of sites, such as Dinmore, is discussed briefly.

Andrew C. Rozefelds [], Queensland Museum GPO Box 3300, South Brisbane, 4101, Queensland, Australia and School of Earth Sciences, University of Queensland, St Lucia, 4072, Queensland, Australia; Mary Dettmann [], H. Trevor Clifford [] and Debra Lewis [], Queensland Museum, GPO Box 3300, South Brisbane, 4101, Queensland, Australia.  相似文献   


4.
Hampe, O., Witzmann, F. & Asbach, P., 2014. A benign bone-forming tumour (osteoma) on the skull of a fossil balaenopterid whale from the Pliocene of Chile. Alcheringa 38, xxx–xxx. ISSN 0311–5518.

A pathology of the fossil baleen whale ‘Megapterahubachi from the early Pliocene of Chile is described. It is a bony outgrowth on the left side of the supraoccipital, which is interpreted as a benign bone-forming tumour (osteoma). This diagnosis is based on X-ray imaging and CT scans of the abnormal bone, revealing a homogeneously dense internal structure with no evidence for lytic areas. The osteoma described here in ‘Megaptera’ hubachi is the first unequivocal evidence of a bone tumour in a cetacean, fossil or extant.

Oliver Hampe [] and Florian Witzmann [], Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, D-10115 Berlin, Germany; Patrick Asbach [], Institut für Radiologie, Charité—Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany. Received 28.8.2013, revised 7.11.2013, accepted 12.11.2013.  相似文献   

5.
Rich, T.H., Hopson, J.A., Gill, P.G., Trusler, P., Rogers-Davidson, S., Morton, S., Cifelli, R.L., Pickering, D., Kool, L., Siu, K., Burgmann, F.A., Senden, T., Evans, A.R., Wagstaff, B.E., Seegets-Villiers, D., Corfe, I.J., Flannery, T.F., Walker, K., Musser, A.M., Archer, M., Pian, R. & Vickers-Rich, P., June 2016. The mandible and dentition of the Early Cretaceous monotreme Teinolophos trusleri. Alcheringa 40, xx–xx. ISSN 0311-5518.

The monotreme Teinolophos trusleri Rich, Vickers-Rich, Constantine, Flannery, Kool & van Klaveren, 1999 Rich, T.H., Vickers-Rich, P., Constantine, A., Flannery, T.F., Kool, L. & van Klaveren, N., 1999. Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Records of the Queen Victoria Museum and Art Gallery 106, 134. [Google Scholar] from the Early Cretaceous of Australia is redescribed and reinterpreted here in light of additional specimens of that species and compared with the exquisitely preserved Early Cretaceous mammals from Liaoning Province, China. Together, this material indicates that although T. trusleri lacked a rod of postdentary bones contacting the dentary, as occurs in non-mammalian cynodonts and basal mammaliaforms, it did not share the condition present in all living mammals, including monotremes, of having the three auditory ossicles, which directly connect the tympanic membrane to the fenestra ovalis, being freely suspended within the middle ear cavity. Rather, T. trusleri appears to have had an intermediate condition, present in some Early Cretaceous mammals from Liaoning, in which the postdentary bones cum ear ossicles retained a connection to a persisting Meckel’s cartilage although not to the dentary. Teinolophos thus indicates that the condition of freely suspended auditory ossicles was acquired independently in monotremes and therian mammals. Much of the anterior region of the lower jaw of Teinolophos is now known, along with an isolated upper ultimate premolar. The previously unknown anterior region of the jaw is elongated and delicate as in extant monotremes, but differs in having at least seven antemolar teeth, which are separated by distinct diastemata. The dental formula of the lower jaw of Teinolophos trusleri as now known is i2 c1 p4 m5. Both the deep lower jaw and the long-rooted upper premolar indicate that Teinolophos, unlike undoubted ornithorhynchids (including the extinct Obdurodon), lacked a bill.

Thomas H. Rich [], Sally Rogers-Davidson [], David Pickering [], Timothy F. Flannery [], Ken Walker [], Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia; James A. Hopson [], Department of Organismal Biology & Anatomy, University of Chicago,1025 East 57th Street, Chicago, IL 60637, USA; Pamela G. Gill [], School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, U.K. and Earth Science Department, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Peter Trusler [], Lesley Kool [], Doris Seegets-Villiers [], Patricia Vickers-Rich [], School of Earth, Atmosphere and Environment, Monash University, Victoria 3800, Australia; Steve Morton [], Karen Siu [], School of Physics and Astronomy, Monash University, Victoria 3800, Australia; Richard L. Cifelli [] Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK 73072, USA; Flame A. Burgmann [], Monash Centre for Electron Microscopy, 10 Innovation Walk, Monash University, Clayton, Victoria 3800, Australia; Tim Senden [], Department of Applied Mathematics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia; Alistair R. Evans [], School of Biological Sciences, Monash University, Victoria 3800, Australia; Barbara E. Wagstaff [], School of Earth Sciences, The University of Melbourne, Victoria 3010, Australia; Ian J. Corfe [], Institute of Biotechnology, Viikinkaari 9, 00014, University of Helsinki, Finland; Anne M. Musser [], Australian Museum, 1 College Street, Sydney NSW 2010 Australia; Michael Archer [], School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Rebecca Pian [], Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA. Received 7.4.2016; accepted 14.4.2016.  相似文献   

6.
Binfield, P., Archer, M., Hand, S.J., Black, K.H., Myers, T.J., Gillespie, A.K. & Arena, D.A., June 2016. A new Miocene carnivorous marsupial, Barinya kutjamarpensis (Dasyuromorphia), from central Australia. Alcheringa 41, xx–xx. ISSN 0311-5518.

A new dasyuromorphian, Barinya kutjamarpensis sp. nov., is described on the basis of a partial dentary recovered from the Miocene Wipajiri Formation of northern South Australia. Although about the same size as the only other species of this genus, B. wangala from the Miocene faunal assemblages of the Riversleigh World Heritage Area, northwestern Queensland, it has significant differences in morphology including a very reduced talonid on M4 and proportionately wider molars. Based on the structural differences and the more extensive wear on its teeth, the central Australian species might have consumed harder or more abrasive prey in a more silt-rich environment than its congener, which hunted in the wet early to middle Miocene forests of Riversleigh.

Pippa Binfield [], Michael Archer [], Suzanne J. Hand [], Karen H. Black [], Troy J. Myers [] Anna K. Gillespie [] and Derrick A. Arena [], PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales 2052, Sydney, Australia.  相似文献   


7.
Wang, H., Li, S., Zhang, Q., Fang, Y., Wang, B. & Zhang, H., 13.02.2015. A new species of Aboilus (Insecta, Orthoptera) from the Jurassic Daohugou beds of China, and discussion of forewing coloration in Aboilus. Alcheringa 39, xxx–xxx. ISSN 0311-5518

He Wang* [], Sha Li* [], Qi Zhang* [], Yan Fang [], Bo Wang? [] and Haichun Zhang [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China.*Also affiliated with University of Chinese Academy of Sciences, Beijing 100049, PR China. ?Also affiliated with Steinmann Institute, University of Bonn, Bonn 53115, Germany.

A new species of Aboilinae (Orthoptera: Prophalangopsidae), Aboilus perbellus, is described and illustrated based on three well-preserved forewings recovered from the Middle–Upper Jurassic Daohugou beds of Inner Mongolia, China. The new species differs from all congeneric forms in its special forewing coloration and features of its wing venation. To date, three types of forewing coloration have been found among different species of Aboilus at Daohugou, suggesting that these taxa inhabited different ecotopes.  相似文献   

8.
Liu, Q., Zhang, H.C., Wang, B., Fang, Y., Zheng, D.R., Zhang, Q. & Jarzembowski, E.A., 2014. A new saucrosmylid lacewing (Insecta, Neuroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China. Alcheringa 38. ISSN 0311-5518.

A new genus and new species of Saucrosmylidae (Insecta, Neuroptera) are described (Daohugosmylus castus) based on a well-preserved hindwing from the Middle Jurassic of Daohugou, Inner Mongolia, China. Daohugosmylus gen. nov. is distinguished by a large and nearly semi-circular hindwing, relatively wide R1 space possessing several rows of cells, anteriorly bent Rs, dense crossveins over the entire wing, and smooth outer margin.

Qing Liu (corresponding author) [], Haichun Zhang [], Bo Wang [], Yan Fang [], Daran Zheng [], Qi Zhang [] and Edmund A Jarzembowski [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, PR China; secondary address of Daran Zheng & Qi Zhang, University of Chinese Academy of Sciences, Beijing, 100049, PR China; and Ed Jarzembowski, Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK. Received 13.11.2013; revised 20.1.2014; accepted 21.1.2014.  相似文献   

9.
Zheng, D., Wang, H., Nel, A., Dou, L., Dai, Z., Wang, B. & Zhang, H. 27 June 2019. A new damsel-dragonfly (Odonata: Anisozygoptera: Campterophlebiidae) from the earliest Jurassic of the Junggar Basin, northwestern China. Alcheringa XX, X–X. ISSN 0311-5518.

A new genus and species of campterophlebiid damsel-dragonfly, Jurassophlebia xinjiangensis gen. et sp. nov., is described from the Lower Jurassic Badaowan Formation in the Junggar Basin, northwestern China. Jurassophlebia differs from all other campterophlebiid genera in having PsA in the same orientation as the distal branch of AA, and in its uniquely open subdiscoidal cell with very acute apical angle in the hind wing. The new discovery adds to the Asian diversity of damsel-dragonflies in the earliest Jurassic.

Daran Zheng* [], He Wang [], Bo Wang [], and Haichun Zhang [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; André Nel [], Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France; Longhui Dou [], Comprehensive Geology Exploration Team, Xinjiang Coalfield Geology Bureau, West Mountain Road, Ürümqi 830000, PR China; Zhenlong Dai [], No.9 Geological Team, Xinjiang Bureau of Geology and Mineral Resources, Ürümqi 830011, PR China; Daran Zheng also affiliated with Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.  相似文献   

10.
Laibl, L., Fatka, O., Budil, P., Ahlberg, P., Szabad, M., Voká?, V. & Kozák, V., 24.3.2015. The ontogeny of Ellipsocephalus (Trilobita) and systematic position of Ellipsocephalidae. Alcheringa 39, 477–487. ISSN 0311-5518.

Well-preserved early holaspid stages of the Cambrian Series 3 trilobites Ellipsocephalus hoffi (Schlotheim, 1823) and Ellipsocephalus polytomus Linnarsson, 1877 have been discovered in the P?íbram-Jince Basin (Czech Republic) and Jämtland (Sweden), respectively. Both species show remarkable morphological changes during late ontogeny. The earliest holaspides share long genal spines, and long macrospines on the second thoracic segment. Whereas macrospines disappear abruptly in later stages, genal spines are progressively shortened. Consequently, the ontogeny of trilobites of Ellipsocephalidae is revised. The morphology of early meraspid cranidia and ontogenetic patterns in the disappearance of macrospines suggest that this family is closely related to members of Redlichiida rather than Ptychopariida.

Luká? Laibl [] and Old?ich Fatka [], Charles University, Institute of Geology and Palaeontology, Albertov 6, 128 43, Prague 2, Czech Republic; Petr Budil [], Czech Geological Survey, Klárov 3, Prague 1, 118 21, Czech Republic; Per Ahlberg [], Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden; Michal Szabad [], Obránc? míru 75, 261 02 P?íbram VII, Czech Republic; Václav Voká? [], Ke Kuka?ce 21, 312 00 Pilsen, Czech Republic; Vladislav Kozák [], K Moravině 11/1689, 190 00 Prague 9, Czech Republic.  相似文献   

11.
Nguyen, J.M.T., Boles, W.E., Worthy, T.H., Hand, S.J. & Archer, M., 2014. New specimens of the logrunner Orthonyx kaldowinyeri (Passeriformes: Orthonychidae) from the Oligo-Miocene of Australia. Alcheringa 38, 000–000. ISSN 0311–5518.

Logrunners (Orthonychidae) are a family of ground-dwelling passerines that are endemic to the Australo-Papuan region. These peculiar birds are part of an ancient Australo-Papuan radiation that diverged basally in the oscine tree. Here we describe eight fossil tarsometatarsi of the logrunner Orthonyx kaldowinyeri, and a distal tibiotarsus tentatively assigned to this species from sites in the Riversleigh World Heritage Area, Australia. The new fossil material ranges in age from late Oligocene to early late Miocene, and extends the temporal range of the Orthonychidae into the late Oligocene; this is the geologically oldest record of the family. These specimens also include the oldest Cenozoic passerine fossils from Australia that can be confidently referred to an extant family. The distinctive features of the tarsometatarsus and tibiotarsus of extant logrunners, which are probably related to their unusual method of foraging, are also present in O. kaldowinyeri. Assuming that O. kaldowinyeri had vegetation requirements similar to those of extant logrunners, its presence in various Riversleigh sites provides clues about the palaeoenvironment of these sites.

Jacqueline M.T. Nguyen [] (author for correspondence), Suzanne J. Hand [], Michael Archer [], School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Walter E. Boles [], Ornithology Section, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia; Trevor H. Worthy [], School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia. Received 19.9.2013; revised 11.10.2013; accepted 25.10.2013

http://zoobank.org/urn:lsid:zoobank.org:pub:F4F6219A-22A3-4F6B-8AEE-2957A227C0E0  相似文献   

12.
Cai, C., Clarke, D.J., Huang, D. & Nel, A., 2014. A new genus and species of Steninae from the late Eocene of France (Coleoptera, Staphylinidae). Alcheringa 38, 557–562. ISSN 0311-5518.

A remarkable new genus and species of rove beetle, Eocenostenus fossilis gen. et sp. nov., is described and figured based on one well-preserved specimen from the late Eocene of Monteils (near Alès, Gard, France). Eocenostenus is definitively placed in the extant subfamily Steninae, based on the combination of dense and coarse body punctation, globular and protruding eyes, exposed and closely spaced antennal insertions on the vertex, and six visible abdominal terga. Eocenostenus differs from the two extant stenine genera Stenus and Dianous most notably in the structure of the prothorax, which is strongly transverse and with unusual anterolateral projections, and in the anteriorly placed antennal insertions. This new discovery highlights the palaeodiversity of a genus-poor subfamily and suggests that the early diversification of Steninae is probably complicated.

Chenyang Cai [] and Diying Huang [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Rd., Nanjing 210008, PR China; Dave J Clarke [], Integrative Research Center, Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA; and André Nel [], Muséum National d’Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, ISYEB, UMR 7205 CNRS UPMC EPHE, CP50, 45 rue Buffon, F-75005 Paris, France. Received 23.1.2014; revised 2.5.2014; accepted 12.5.2014.  相似文献   

13.
Meor, H.A.H., Yong, A.M., Zakaria, M.Z.Z. & Ghani, A.A., 2.6.2015. First record of Homoctenus (Tentaculitoidea, Homoctenida) from the Late Devonian of northwest Peninsular Malaysia. Alcheringa 39, 550–558. ISSN 0311-5518.

The homoctenid tentaculitoid genus Homoctenus is reported for the first time from Peninsular Malaysia. The fossils derive from the Upper Devonian Sanai Limestone, exposed in the state of Perlis, northwest Peninsular Malaysia. The fossils are closely related to Homoctenus tenuicinctus tenuicinctus and are described as Homoctenus sp. cf. H. tenuicinctus. The homoctenids were recovered from an interval containing a rich conodont assemblage, indicating a Frasnian age (Palmatolepis linguiformis Zone).

Meor Hakif Amir Hassan [], Yong Adilah Mustafa [], Mohamad Z.Z. Zakaria [], Azman A. Ghani [], Geology Department, University of Malaya, 50603 Kuala Lumpur, Malaysia. Received 12.4.2015; revised 27.5.2015; accepted 2.6.2015.  相似文献   

14.
Poropat, S.F., Martin, S.K., Tosolini, A.-M.P., Wagstaff, B.E, Bean, L.B., Kear, B.P., Vickers-Rich, P. &; Rich, T.H., May 2018. Early Cretaceous polar biotas of Victoria, southeastern Australia—an overview of research to date. Alcheringa 42, 158–230. ISSN 0311-5518.

Although Cretaceous fossils (coal excluded) from Victoria, Australia, were first reported in the 1850s, it was not until the 1950s that detailed studies of these fossils were undertaken. Numerous fossil localities have been identified in Victoria since the 1960s, including the Koonwarra Fossil Bed (Strzelecki Group) near Leongatha, the Dinosaur Cove and Eric the Red West sites (Otway Group) at Cape Otway, and the Flat Rocks site (Strzelecki Group) near Cape Paterson. Systematic exploration over the past five decades has resulted in the collection of thousands of fossils representing various plants, invertebrates and vertebrates. Some of the best-preserved and most diverse Hauterivian–Barremian floral assemblages in Australia derive from outcrops of the lower Strzelecki Group in the Gippsland Basin. The slightly younger Koonwarra Fossil Bed (Aptian) is a Konservat-Lagerstätte that also preserves abundant plants, including one of the oldest known flowers. In addition, insects, crustaceans (including the only syncaridans known from Australia between the Triassic and the present), arachnids (including Australia’s only known opilione), the stratigraphically youngest xiphosurans from Australia, bryozoans, unionoid molluscs and a rich assemblage of actinopterygian fish are known from the Koonwarra Fossil Bed. The oldest known—and only Mesozoic—fossil feathers from the Australian continent constitute the only evidence for tetrapods at Koonwarra. By contrast, the Barremian–Aptian-aged deposits at the Flat Rocks site, and the Aptian–Albian-aged strata at the Dinosaur Cove and Eric the Red West sites, are all dominated by tetrapod fossils, with actinopterygians and dipnoans relatively rare. Small ornithopod (=basal neornithischian) dinosaurs are numerically common, known from four partial skeletons and a multitude of isolated bones. Aquatic meiolaniform turtles constitute another prominent faunal element, represented by numerous isolated bones and articulated carapaces and plastrons. More than 50 specimens—mostly lower jaws—evince a high diversity of mammals, including monotremes, a multituberculate and several enigmatic ausktribosphenids. Relatively minor components of these fossil assemblages are diverse theropods (including birds), rare ankylosaurs and ceratopsians, pterosaurs, non-marine plesiosaurs and a lepidosaur. In the older strata of the upper Strzelecki Group, temnospondyl amphibians—the youngest known worldwide—are a conspicuous component of the fauna, whereas crocodylomorphs appear to be present only in up-sequence deposits of the Otway Group. Invertebrates are uncommon, although decapod crustaceans and unionoid bivalves have been described. Collectively, the Early Cretaceous biota of Victoria provides insights into a unique Mesozoic high-latitude palaeoenvironment and elucidates both palaeoclimatic and palaeobiogeographic changes throughout more than 25 million years of geological time.

Stephen F. Poropat*? [; ], Faculty of Science, Engineering and Technology, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia; Sarah K. Martin*? [; ] Geological Survey of Western Australia, 100 Plain St, East Perth, Western Australia 6004, Australia; Anne-Marie P. Tosolini [] and Barbara E. Wagstaff [] School of Earth Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia; Lynne B. Bean [] Research School of Earth Sciences, Australian National University, Acton, Canberra, Australian Capital Territory 2001, Australia; Benjamin P. Kear [] Museum of Evolution, Uppsala University, Norbyvägen 16, Uppsala SE-752 36, Sweden; Patricia Vickers-Rich§ [; ] Faculty of Science, Engineering and Technology, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia; Thomas H. Rich [] Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia. *These authors contributed equally to this work. ?Also affiliated with: Australian Age of Dinosaurs Museum of Natural History, Lot 1 Dinosaur Drive, PO Box 408, Winton, Queensland 4735, Australia. ?Also affiliated with: Earth and Planetary Sciences, Western Australian Museum, Welshpool, Western Australia 6101, Australia. §Also affiliated with: School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria 3800, Australia.  相似文献   

15.
Yang, T.L., He, W.H., Zhang, K.X., Wu, S.B., Zhang, Y., Yue, M.L., Wu, H.T. & Xiao, Y.F., November 2015. Palaeoecological insights into the Changhsingian–Induan (latest Permian–earliest Triassic) bivalve fauna at Dongpan, southern Guangxi, South China. Alcheringa 40, xxx–xxx. ISSN 0311-5518.

The Talung Formation (latest Permian) and basal part of Luolou Formation (earliest Triassic) of the Dongpan section have yielded 30 bivalve species in 17 genera. Eight genera incorporating 11 species are systematically described herein, including three new species: Nuculopsis guangxiensis, Parallelodon changhsingensis and Palaeolima fangi. Two assemblages are recognized, i.e., the Hunanopecten exilisEuchondria fusuiensis assemblage from the Talung Formation and the Claraia dieneri–Claraia griesbachi assemblage from the Luolou Formation. The former is characterized by abundant Euchondria fusuiensis, an endemic species, associated with other common genera, such as Hunanopecten, which make it unique from coeval assemblages of South China. A palaeoecological analysis indicates that the Changhsingian bivalve assemblage at Dongpan is diverse and represented by various life habits characteristic of a complex ecosystem. This also suggests that redox conditions were oxic to suboxic in deep marine environments of the southernmost Yangtze Basin during the late Changhsingian, although several episodes of anoxic perturbations and declines in palaeoproductivity saw deterioratation of local habitats and altered the taxonomic composition or population size of the bivalve fauna.

Tinglu Yang [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Weihong He* [] and Kexin Zhang [], State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Shunbao Wu [], Yang Zhang [], Mingliang Yue [], Huiting Wu [] and Yifan Xiao [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China.  相似文献   


16.
Li, Y., Liu, X., Ren, D., Li, X. & Yao, Y., June 2016. First report of Cixiidae insect fossils from the Miocene of the northeastern Tibetan Plateau and their palaeoenvironmental implications. Alcheringa 41, xxx–xxx. ISSN 0311-5518.

A new insect species, Cixius discretus (Hemiptera, Fulgoromorpha), from the Lower Miocene Garang Formation of Zeku County, Qinghai Province (northeastern Tibetan Plateau) is described. This species can be assigned to Cixiidae and represents the first fossil representative of this family from Qinghai Province. Based on the recent single-origin hypothesis and the distribution of tectonic plates in the Cretaceous, we consider that ancient Cixius had dispersed globally prior to the Cretaceous. Through analysis of the habitats of extant Cixius, the palaeoclimate and fossil flora of the Zeku area during the Miocene, we interpret the climate of Zeku in the early Miocene to have been warm-temperate and mildly arid. The new species constitutes evidence of wooded and shrubby habitats in Zeku during the Miocene.

Yi Li [], XiaoHui Liu [], Dong Ren [] and YunZhi Yao [], College of Life Sciences, Capital Normal University, Xisanhuanbeilu 105, Haidian District, Beijing 100048, PR China; XiangChuan Li [], College of Earth Sciences and Resources & Key Laboratory of Western Mineral Resources and Geological Engineering of the Ministry of Education, Chang’an University, Xi’an 710054, PR China.  相似文献   


17.
Wilson, L.A.B., Hand, S.J., López-Aguirre, C., Archer, M., Black, K.H., Beck, R.M.D., Armstrong, K.N. & Wroe, S., July 2016. Cranial shape variation and phylogenetic relationships of extinct and extant Old World leaf-nosed bats. Alcheringa 40, 509–524. ISSN 0311-5518

The leaf-nosed bats in Hipposideridae and Rhinonycteridae currently have an Old World tropical to subtropical distribution, with a fossil record extending back to the middle Eocene of Europe. The Riversleigh World Heritage fossil site in northwestern Queensland constitutes a particularly rich archive of faunal diversity for Old World leaf-nosed bats, having yielded more than 20 species. We used 2D geometric morphometrics to quantify cranial shape in hipposiderids and rhinonycterids, with the aim of referring unallocated fossil species, particularly from Riversleigh, to each family within a phylogenetic framework, and using a quantitative approach to reconstruct cranial shape for key clades in these Old World radiations. Our sample comprised 21 extant hipposiderids and rhinonycterids, 1 megadermatid and 1 rhinolophid, in which 31 landmarks were placed in lateral and ventral views, and five measurements were taken in dorsal view. The phylogeny used as the framework for this study was based on an analysis of 64 discrete morphological characters from the dentition, cranium and postcranium scored for 42 extant and fossil hipposiderids and rhinonycterids and five outgroup taxa (rhinolophids and megadermatids). The phylogenetic analysis was conducted using maximum parsimony, with relationships among selected extant taxa constrained to match the results of recent comprehensive molecular studies. Our phylogenetic results suggest that the Riversleigh leaf-nosed bats probably do not represent an endemic Australian radiation, with fossil species spread throughout the tree and several with sister-group relationships with non-Australian taxa. Discriminant analyses (DA) conducted separately on each dataset resulted in cross-validated classification success ranging from 61.9% for ventral landmarks to 71.4% for lateral landmarks. Classification of the original grouped cases resulted in success of 81% for each dataset. Of the eight fossil taxa included as unknowns in the DA, six were found to be assigned to the same group as recovered by the phylogenetic analysis. From our results, we assign the Riversleigh Miocene species Archerops annectens, Brachipposideros watsoni, Brevipalatus mcculloughi, Rhinonicteris tedfordi and Xenorhinos halli to Rhinonycteridae, and Riversleigha williamsi and Hipposideros bernardsigei to Hipposideridae. Our results support Pseudorhinolophus bouziguensis, from the early Miocene of Bouzigues in southern France, as belonging to Hipposideridae, and probably Hipposideros. The reconstructed ancestor of hipposiderids was distinguished from that of the rhinonycterids by having a shorter rostrum, and less of a distinction between the rostrum and braincase.

Laura A.B. Wilson [], Suzanne J. Hand [], Camilo López-Aguirre [], Michael Archer [] and Karen H. Black [], PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052; Robin M.D. Beck [], School of Environmental & Life Sciences, University of Salford, Salford M5 4WT, UK; Kyle N. Armstrong* [], Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia. *Also affiliated with South Australian Museum, North Terrace, Adelaide, SA 5000, Australia; Stephen Wroe [], School of Environmental and Rural Science, University of New England, Armidale NSW 2351, Australia.  相似文献   

18.
Khan, M.A., Babar, M.A., Akhtar, M., Iliopoulos, G., Rakha, A. & Noor, T., November 2015. Gazella (Bovidae, Ruminantia) remains from the Siwalik Group of Pakistan. Alcheringa 40, xxx–xxx. ISSN 0311-5518.

New gazelle fossils are described from the Siwalik Group of Pakistan. The material includes horncores, maxilla and mandible fragments, and isolated teeth. The available samples are assigned to three Gazella species: Gazella sp. in the Lower Siwalik Subgroup (ca 14.2–11.2 Ma), and G. lydekkeri and G. superba in the Middle Siwalik Subgroup (ca 10.2–3.4 Ma). Based on a review of the Siwalik Group gazelles, G. padriensis is synonymized with G. lydekkeri. Gazella superba Pilgrim, 1939 sensu stricto is a large form and is a valid species of the genus in the Siwalik Group.

Muhammad Akbar Khan [], Muhammad Adeeb Babar [], Muhammad Akhtar [], Allah Rakha [], Tuba Noor [], Abu Bakr Fossil Display & Research Centre, Department of Zoology, Quid-e-Azam Campus, Punjab University (54590), Lahore, Pakistan; George Iliopoulos [], Geology Department of the University of Patras, Patras, Greece.  相似文献   


19.
Chen, J., Beattie, R., Wang, B., Jiang, H., Zheng, Y. & Zhang, H., 12 April 2019. The first palaeontinid from the Late Jurassic of Australia (Hemiptera, Cicadomorpha, Palaeontinidae). Alcheringa 43, 449–454. ISSN 0311-5518.

Palaeontinidae, an extinct group of large arboreal insects, has the most diverse record among the Mesozoic Hemiptera, but only a few taxa have been reported from the Southern Hemisphere. Herein, Talbragarocossus jurassicus Chen, Beattie & Wang gen. et sp. nov., one of the earliest representatives of ‘late’ Palaeontinidae, is described and illustrated from the Upper Jurassic Talbragar Fossil Fish Bed in New South Wales, Australia. This new taxon constitutes the first representative of Palaeontinidae in Australia and the first Jurassic example in Gondwanaland, providing significant distributional and stratigraphic extensions to the family.

Jun Chen*? [] and Yan Zheng? [], Institute of Geology and Paleontology, Linyi University, Shuangling Road, Linyi 276000, China. Bo Wang? [], Hui Jiang [] and Haichun Zhang [] State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. Robert Beattie [], Australian Museum, 1 William St., Sydney, NSW 2010, Australia. ?Also affiliated with: State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China. ?Also affiliated with: Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.  相似文献   

20.
Tineo, D.E., Bona, P., Pérez, L.M., Vergani, G.D., González, G., Poiré, D.G., Gasparini, Z.N. & Legarreta, P., 1.10.2014. Palaeoenvironmental implications of the giant crocodylian Mourasuchus (Alligatoridae, Caimaninae) in the Yecua Formation (late Miocene) of Bolivia. Alcheringa 39, xxx–xxx. ISSN 0311-5518

Outcrops of the Yecua Formation (late Miocene) are exposed for approximately 230 m along the La Angostura section of the Piraí River (50 km southwest of Santa Cruz de la Sierra). These reveal massive (argillic palaeosols) and laminated (quiet-water lacustrine and marsh settings) mudstones interbedded with thin sandstones containing microfossils, molluscs and vertebrate remains. Significantly, the succession hosts a giant crocodylian, Mourasuchus (Alligatoridae, Caimaninae), which is represented by both skull and postcranial fragments found in association with freshwater turtles and fishes. Mourasuchus was distributed widely from the middle Miocene of Colombia to upper Miocene of Venezuela, Brazil and Argentina, suggesting connections between major fluvial systems and an active mechanism for dispersal of South American freshwater vertebrates during the Miocene.

David Eric Tineo [] and Daniel Gustavo Poiré [], CONICET—Centro de Investigaciones Geológicas, Universidad Nacional de La Plata. Calle 1 (644), B1900FWA, La Plata, Argentina; Paula Bona [] and Zulma Gasparini [], CONICET—División Paleontología Vertebrados, Museo de La Plata. Paseo del Bosque s/n, B1900FWA, La Plata, Argentina; Leandro Martín Pérez [] CONICET—División Paleozoología Invertebrados, Museo de La Plata. Paseo del Bosque s/n, B1900FWA, La Plata, Argentina; Gustavo Dardo Vergani []Pluspetrol S.A. Lima (339), C1073AAG, Ciudad Autónoma de Buenos Aires, Argentina; Gloria González Rigas []Pluspetrol Bolivia Corporation SA, Av. Grigotá esq. Las Palmas, Santa Cruz de la Sierra, Bolivia; Pablo Legarreta []—Pluspetrol S.A. Lima (339), C1073AAG, Ciudad Autónoma de Buenos Aires, Argentina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号