首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple system for measuring the direction of arrival of continuous high frequency radio waves reflected obliquely from the ionosphere is described. Results obtained over a near vertical path are used to evaluate changes in the electron density gradients (tilts) in the E-region. Wave interference on the transmission due to multiple hop or ground wave propagation is discussed.  相似文献   

2.
Measurements of radio waves partially reflected from the D-region made using two antennae of very different beamwidth are reported. The arrays are composed of 40 and 4 dipoles respectively. It is shown that the gain of the larger array over the smaller is often variable—both in height and time. These results can be used to estimate the off-vertical angles from which significant energy is returned. For altitudes less than 80 km angles less than 10° seem to be usual but at higher altitudes the angles increase to values of the order of 15°–20°. Other important properties of the echoes, such as the probability distribution of the amplitude were also measured. The results are discussed with particular reference to the differential absorption method of measuring electron densities and also to the nature of the irregularities responsible for the partial reflections.  相似文献   

3.
This paper generalizes experimental data on variations of the angles of arrival of transionospheric radio signals caused by changes in a regular ionosphere and by effects of medium-scale travelling ionospheric disturbances (TIDs). The data are based on radio astronomical observations of discrete sources and compact active features on the Sun as well as on angular measurements of signals from artificial Earth satellites with geostationary and circular orbits.The experimental data are interpreted through calculations of refraction corrections using a Gaussian model of a regular ionosphere disturbed by a three-dimensional travelling wave (the TID model) as well as an adaptive model of a regular ionosphere. Some possibilities of correcting refraction distortions with the use of appropriate models and ionospheric diagnostic tools are discussed.  相似文献   

4.
The numerical synthesis of ionograms by ray-tracing in an analytic two-dimensional ionosphere is simplified by a technique which avoids the usual wastage of ray tracings. The technique is particularly suitable for obtaining ionogram sequences corresponding to a moving ionospheric disturbance. It is applied firstly to a moving tilted ionisation increase, which gives the familiar travelling-cusp records. Ionograms do not give a good measure of the vertical distribution of ionisation, and in the case considered lead to an overestimate of the horizontal size of the increase by a factor of about 2. For a travelling ionisation decrease or trough, the ionograms show an additional U-shaped trace overlapping the main trace. Calculated ionograms agree closely with some observations. It is difficult to obtain any measure of the size of the electron-density decrease; critical frequency scalings may give no indication of the passage of an intense disturbance. Similar results are obtained for a wavelike perturbation in an exponential topside ionosphere. Topside ionograms then show multiple ‘nose’ traces, following in general the curve for the unperturbed ionosphere. It is suggested that the multiple echoes frequently observed on topside ionograms may, in some cases, be due to refraction in large disturbances rather than the commonly-assumed ducting mechanism.  相似文献   

5.
The solar and lunar variations in the phase path, group path and amplitude of a fixed frequency transmission were obtained at the September equinox over a slightly oblique path. The phase of the lunar semidiurnal tide in the phase path and amplitude were similar, the maxima occurring near 0200 lunar time, whereas the group path had a maximum near 0800 lunar time. These results were compared with other results obtained near the same location. The results suggest a complex situation in the E-region, where the height of the lunar current depends on season, and also suggest that the location and distribution of the solar and lunar currents may be different.  相似文献   

6.
This paper presents the results derived by measuring angular spectra of HF-radio pulses reflected from the subpolar ionospheric F2-region (62°N) using vertical-incidence soundings and a phase direction finder with Doppler filtering. The results correspond to three main types. One is the classical mirror reflection from the undisturbed ionospheric F2-region, typical of mid-latitudes (deviations from zenith do not exceed 3°; the angular spectrum width is less than 1°). The second type includes oblique diffuse reflections with a deviation from zenith of from 10 to 45°. The azimuth of arrival of these reflections is distributed in the range from 0 to 360°, the angular spectrum width is from 5 to 10°, and the range varies from 400 to 600 km. The third type includes anomalous mirror reflections with small deviations from zenith (not greater than 3°) but with substantially larger detection ranges (for example, 500km) as compared with the main reflections (250–300 km).  相似文献   

7.
The effect of transverse wind velocity on the amplitude scintillations of millimetre radio waves is studied. Scintillation data obtained on two line-of-sight microwave links at 36 GHz and 110 GHz on a common 4.1 km path are used to estimate the wind velocity perpendicular to the propagation path. The estimated wind velocity is within 20% of the value obtained from direct measurements using a conventional anemometer.  相似文献   

8.
The main object of the campaign reported here was to compare TID characteristics obtained from two essentially different observation techniques: (1) observation of the apparent angular position shifts of Virgo A by the Nançay radioheliograph (47.33°N, 2.15°E) gave azimuths and periods of travelling ionospheric disturbances (TIDs); (2) differential Doppler shifts of signals from NNSS-satellites recorded simultaneously at Tours (47.35°N, 0.70°E), Nançay and Besançon (47.32°N, 5.99°E) provided azimuths and latitudinal wavelengths. Observations were made during the period 10–30 November 1987, between 6 and 12 h UT. It is found that azimuths obtained from the two techniques are consistent if sufficient averaging over wave trains is performed: averaging over several hours for radio interferometry and averaging over the whole satellite trace for the differential Doppler technique. Averaging is necessary because of (1) the intrinsic dispersion in wave azimuth, (2) the broadness of observed wave spectra and the dispersive properties of gravity waves, and (3) the spatial separation of ionospheric points for the two techniques. Good agreement between the azimuths was achieved by setting the altitude of the TIDs, which is used in the differential Doppler analysis, to about 250 km, appreciably lower than the maximum in electron density (about 350 km). The mean azimuth of observed TIDs was 12° East from South with a standard deviation of about 30°. The dominant period and horizontal wavelength of the observed TIDs were 40 min and 450 km. The East-West coherence length of the TIDs was found to be only of the order of 200 km.  相似文献   

9.
Using ray tracing we investigate, on a qualitative level and in the linear approximation, the effects of medium-scale travelling ionospheric disturbances (MS TIDs) arising when powerful HF radio transmitters are operated in conjunction with antenna arrays designed for ionospheric modification (heating) and for radio location of the Moon. It is shown that the HF radio wave focusing effect, arising during the movement of the MS TIDs, can give rise to a strong inhomogeneous and nonstationary modulation of the space-time distribution of the field intensity of a powerful radio transmitter both at heights near the reflection region (in heating experiments) and at the exit from the ionosphere (in radio location of the Moon). The excess of intensity over an unperturbed value for typical parameters of MS TIDs in experiments on ionospheric modification can reach values of hundreds of percent: a ‘spot’ of increased intensity of the wave field can have the size of about 1–10 km, and can move with a velocity close to the MS TID phase velocity.In the case of lunar radio location, the inhomogeneity and nonstationarity of the wave field intensity distribution at the exit from the ionosphere substantially complicates the evaluation of the corresponding distribution on the Moon's surface and the interpretation of the Moon-reflected radio signal characteristics.  相似文献   

10.
Angles of arrival of first echoes (those directly reflected from the ionosphere) and second echoes (those twice reflected from the ionosphere with an intermediate reflection from the ground) were measured. It is easy to show that under specified conditions the off-vertical angle of arrival of the second echo ought to be twice that of the first echo. It is consistently found to be less than this for much of the time. Several possibilities are canvassed, but none provide a convincing explanation. The place on the Earth from which the second echo was reflected was nearly always the sea or flat ground. Apparently, rapid phase variations, as the tilt of the ionosphere changed, prevented recognition of the second echo by this particular radar system for echoes reflected from rough terrain.  相似文献   

11.
Radio waves in a stratified plasma can sometimes penetrate through a region where, according to a simple ray theory, they would be evanescent. They emerge on the far side in a different magnetoionic mode. This occurs when the incident wave normal is within a small cone of angles, called a radio window. The best known example is the Ellis window, used to explain the Z-trace in ionosonde records. Other phenomena where windows may be important have recently been studied. Simple approximate formulae are given for the transmission coefficient of a window and for its angular widths. These show the dependence on frequency, electron concentration gradient and direction of the ambient magnetic field. Comparison with more accurate calculations shows that these formulae are likely to be reliable in practical applications. The tracing of rays near a window is discussed, and the properties of a second kind of window are described.  相似文献   

12.
The possible generation and suppression of ion-cyclotron waves in a collisional plasma by external high power electromagnetic (EM) waves with frequency close to the local upper-hybrid frequency is considered. It is shown that the ion cyclotron instability can be destabilized (stabilized) for ω0UH0 > ωUH), where ω0 is the pump frequency of the EM wave. The results are applied to naturally occurring ion-cyclotron instabilities in the high latitude ionosphere.  相似文献   

13.
The problem of electromagnetic field disturbances produced by the interaction between winds of acoustic gravity waves (AGW) origin and the ionospheric plasma has been considered. It is shown that, when not allowing the electrostatic approach, electromagnetic field disturbances represent shear Alfvén and compressional modes modified by ionospheric Pedersen and Hall conductivities. It is further shown that the quasielectrostatic Alfvén type disturbances give the main contribution to electric field perturbations. Magnetic field perturbations due to Alfvén and compressional modes have the same order of magnitude. Two numerical models for simulation of the problem under consideration have been developed. The first model is intended for the simulation of Alfvén type disturbance production and transmission into the magnetosphere, taking into account the dipole geometry of the geomagnetic field, but a mutual transformation of Alfvén and compressional modes is ignored. The second model is constructed for the simulation of both electromagnetic field disturbance production and their mutual transformation in the ionosphere. The results of numerical simulations with these models show that there is an opportunity for AGW activity monitoring in the lower thermosphere by ground-and satellite-based recordings of magnetic and electric field variations.  相似文献   

14.
In the aggregate, acoustic gravity waves in the F-region constitute a spectrum of geophysical noise extending from the frequencies involved in diurnal variations up to the Brunt-Väisälä buoyancy frequency. They drive a roughly uniform power spectrum of travelling ionospheric disturbances (TIDs) with vertical scales of the order of the atmospheric scale height H and with horizontal scales extending from the radius of the Earth down to H. It has been known since the 1950s that this permits multiple normals onto the F-region from an ionosonde, thereby creating the multiple-trace type of spread F on ionograms. At shorter scales the spectrum of TIDs decreases in strength and, below the mean free path of the neutral atmosphere, creates a spectrum of plasma turbulence aligned along the Earth's magnetic field. Progressively shorter scales are responsible for phase scintillation, for amplitude scintillation and for blur-type spread F on ionograms. A weak extension of the spectrum to scales less than the ion gyroradius is responsible for spread F and transequatorial propagation in the VHF band. Under evening conditions in equatorial regions a band of TIDs with wavelengths of the order of 600 km can, at times, have a phase velocity that matches the drift velocity of the plasma (Röttger 1978). This band of TIDs is then amplified until it breaks (Klostermeyer 1978). The associated explosive increase in plasma turbulence creates the plume phenomenon discovered by Woodmn and La Hoz (1976).  相似文献   

15.
The results of Booker and Majidiahi (1981) concerning refractive scattering by large-scale irregularities in a phase-changing screen are combined with the theory of diffractive scattering by small-scale irregularities in order to study three intensity scintillation phenomena. The first is the reflection of radio and optical waves from an ocean surface disturbed by a spectrum of water waves. The second is the scintillation of VHP, UHF and SHF radio waves traversing the ionospheric F-region. The third is the scintillation of VHF, UHF and SHF radio waves traversing the solar wind. In each case appropriate values are chosen for the mean square fluctuation of phase, for the outer scale, for the inner scale and for the spectral index. Spectral diagrams are drawn to show how the outer scale, the inner scale, the Fresnel scale, the focal scale, the lens scale and the peak scale vary with a relevant parameter (electromagnetic wave-frequency for the ocean, RMS fractional fluctuation of ionization density for the ionosphere, and distance of closest approach to the Sun for the solar wind). For the ionosphere and the solar wind, multiple refractive scattering by weak irregularities occurs in practice whereas it is strong single scattering that is assumed in the thin-screen theory ; potential consequences of this are discussed qualitatively.  相似文献   

16.
The effects on the horizontal ionospheric velocity vectors deduced from radar beam-swinging experiments, which occur when changes in the flow take place on short time scales compared with the experiment cycle time, are analysed in detail. The further complications which arise in the interpretation of beam-swinging data, due to longitudinal gradients in the flow and to field-aligned flows, are also considered. It is concluded that these effects are unlikely to seriously compromise statistical determinations of the response time of the flow, e.g. to changes in the north-south component of the IMF, such as have been recently reported by Etemadi et al. (1988, Planet. Space Sci. 36, 471), using EISCAT ‘Polar’ data.  相似文献   

17.
Whistler-mode signals observed at Faraday, Antarctica (65° S, 64° W, Λ=50.8°) show anomalous changes in group delay and Doppler shift with time during the main phase of intense geomagnetic activity. These changes are interpreted as the effect of refracting signals into and out of ducts near L=2.5 by electron concentration gradients associated with edges of the mid-latitude ionospheric trough. The refraction region is observed to propagate equatorwards at velocities in the range 20–85 ms−1 during periods of high geomagnetic activity (Kp ≥ 5), which is in good agreement with typical trough velocities. Model estimates of the time that the trough edges come into view from Faraday show a good correlation with the observed start times of the anomalous features. Whistler-mode signals observed at Dunedin, New Zealand (46° S, 171° E, Λ=52.5°) that have propagated at an average L-shell of 2.2 (Λ=47.6°) do not show such trough-related changes in group delay. These observations are consistent with a lower occurrence of the trough at lower invariant latitudes.  相似文献   

18.
A 600-km array of five Trimpi receivers (“elements”) has been set up in New Zealand broadside to the VLF (22.3 kHz) transmitter, NWC, some 6000 km west, with element separations varying from 8 km to 550 km. Although such a five-element array is inadequate for imaging of lightning-induced ionisation enhancements (LIEs) by VLF holography, or inverse scattering, estimates of LIE size and location can be made if the shape and form of the LIE can be guessed or assumed, with even fewer elements. With five elements, tests of the assumed model can be made as well.Owing to its transform properties, the simplest model to use for scattering inversion is the Gaussian LIE distribution. For this model, and for single mode propagation, an inversion process is derived here for the full range of LIE and path dimensions, ranging from those for which the receiver is in the diffraction far field to those in which “geometric optics” dominate. This inversion process has some validity for small LIEs of other shapes of simple form. For more extreme models, the dominance of geometry or diffraction can usually be established in individual cases which then allows simple scaling procedures to be used in scattering inversion.Some 70 Trimpi events were observed on all five elements during a single night in July. 1991 (late winter). These were used to determine LIE location and size, and to test the applicability of various LIE models. It was found that most LIEs that night occurred over the Tasman Sea near the great circle from the VLF transmitter, NWC, to Wellington, generally some 500 to 2000 km from Wellington, and with north-south dimensions of 100–250 km. Much longer east-west dimensions (oriented towards NWC) are suggested to account for the very strong Trimpis observed. While about half of these LIEs that night could have had a smooth lateral spread (e.g., Gaussian), the remainder required varying degrees of fine structure, from “flat” or Butterworth LIEs to multiple LIEs as might be expected from multiduct whistlers, to explain the observed diffraction pattern exhibiting maxima and minima as well as the wide angular range over which simultaneous Trimpis were observed.  相似文献   

19.
This article presents results of a multi-proxy study of a fen deposit in the former mining district of Falkenstein near Schwaz in the Tyrol, Austria. The aim of the study in the framework of the special research program HiMAT (The History of Mining Activities in the Tyrol and Adjacent Areas – Impact on Environment & Human Societies) was to disclose the ecological impact of mining in pollen and heavy metal diagrams and to create a model combining the changes in palaeoecological proxies with historical evidences for mining. The application of this palaeoecological–historical model to prehistoric times allowed us to reconstruct the impact of mining and metallurgic activities in the surroundings of the fen during the last millennia. The results of stratigraphy, radiocarbon dating, LOI, pollen and micro-charcoal analyses as well as geochemical analyses of scandium, lead and lead isotopes validated by historical and archaeological data are hereby presented.  相似文献   

20.
The dynamics of a one-dimensional ionospheric irregularity interacting with the magnetosphere is studied by numerical simulation. The polarization electric field produced by charge separation within the irregularity propagates along magnetic field lines with the Alfvén velocity VA and drives polarizational and field-aligned currents in the magnetosphere. Their values and localization are controlled by motion and deformation of the irregularity resulting from its electrostatic coupling to the background ionosphere. The pattern of the field-aligned currents varies with time and depends primarily on gradients of the polarization electric field. The latter is controlled by the ambient electric field, diffusion, recombination process, intensity of the initial perturbation, etc. Feedback effect of the magnetospheric conductance on the development of the irregularity is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号