首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of the equatorial night-time F-region to magnetic stormtime disturbances has been examined using mainly ionograms recorded at Trivandrum and magnetograms recorded at high, middle and low latitudes during the magnetic storm of 23–26 November 1986. The analysis revealed a close coupling between the equatorial F-region and high latitude magnetic field disturbances originating in solar wind-magnetosphere interactions. The presence of spread-F on ionograms during this period is found to be consistent with the Rayleigh-Taylor instability mechanism for the growth of the irregularities.  相似文献   

2.
AE indices have been used to investigate, at times of increased geomagnetic activity, the possibility of significant changes to both spread-F occurerence and hF values for 3 stations in equatorial latitudes. The investigation covered a sunspot minimum period. Furthermore, data for each of these parameters have been considered for both a pre-midnight period (interval A) and a post-midnight period (interval B). The use of the AE indices at 12 different times at 2 h intervals allows the measurement of the delay times, after increased geomagnetic activity, of any significant changes in the parameters being investigated.The results show that for interval A significant suppressions of spread-F occurrence are recorded at delay times of approximately 3 h and 9 h. These delays correspond to enhanced geomagnetic activity at local times of 1800 and 1200, respectively. Also, for interval A the hF variations suggest that hF is suppressed at times of spread-F suppression. For interval B spread-F occurrence seems to be controlled by two opposing effects. For several hours after enhanced geomagnetic activity spread-F occurrence increases significantly, followed by a sharp decline culminating in suppressed occurrence, again related to increased geomagnetic activity at 1800 local time for the maximum effect. Also, for interval B hF values lift abruptly a few hours after enhanced geomagnetic activity, followed by a gradual decline when delays of up to 20 h are considered. Further work on these delays may allow reliable short-term forecasting of some ionospheric behaviour in equatorial regions.  相似文献   

3.
It is well known that several types of geomagnetic pulsations show a significant amplitude enhancement near the dip equator due to the daytime equatorial electrojet. In the present study, the dependence of this enhancement on the period and type of geomagnetic variations is examined. The results show that, in general, the amplitude enhancement appears to be more or less uniform, amounting to a factor of 2.0–2.5, over a wide range of periods. However, for pulsations, there is a fairly sharp cut-off of the equatorial enhancement around a 20 s period, the shorter period end of Pc3 pulsations. Further, shorter period pulsations (<20 s) sometimes suffer an attenuation at the dip equator near noon. These results are discussed in the light of the transmission characteristics of the ionosphere, including the possible relation to the equatorial anomaly in the ionospheric F-region.  相似文献   

4.
Geomagnetic storm-time variations of the atmospheric transparency in various latitudinal regions are considered. It is shown that the solar radiation measured at the Earth's surface at local noon increases by approximately 0.1 cal/cm2 min at latitudes ϑ = 60–70° during geomagnetic disturbances. At middle latitudes (ϑ≈ 50°) this effect is not observed. The variation of the atmospheric transparency is shown to be associated with a simultaneous decrease of the galactic cosmic ray intensity.  相似文献   

5.
It is now an established fact that during extremely strong magnetic storms a sudden anomalous decrease in the F-layer critical frequency foF2 is sometimes noticed at the equator around noon-time and the duration of this effect is known to be anywhere between some tens of minutes to several hours. As an extension of earlier work by Turunen and Rao, 1980, seven severe auroral storm events based on AE index have been selected during the period July 1958–June 1960 and their effects on the equatorial ionosphere have been investigated utilizing the published ionospheric data for the chain of Indian stations starting from equatorial latitudes and extending up to the mid-latitudes. From this study, it is noted that at the equator around noontime the foF2 values decrease and the noon bite-out phenomena are enhanced. However, as one goes towards mid-latitudes this trend is reversed. Because of this, the Appleton anomaly is also enhanced during disturbed days. Besides, the fFs values at the magnetic equator show an increase during disturbed days indicating thereby that the eastward equatorial electrojet current is enhanced on disturbed days. This suggests that the auroral electrojet current is coupled to the equatorial electrojet current possibly via the magnetosphere.  相似文献   

6.
The model of ionospheric fluctuations used by Booker and Ferguson (1978) to describe spread-F is applied to ionospheric scintillation in the band from 100 MHz to 10 GHz in equatorial regions. Calculations are based on long Isotropie field-aligned irregularities possessing an inverse power-law spectrum extending from an outer scale [wavelength/(2π)]linked to the properties of the neutral atmosphere down to an inner scale of the order of the ionic gyroradius. Spectral indices from 0 to 6 are considered, with special attention to the range from 1 to 4. The r.m.s. fluctuation of ionization density is assumed to be proportional to the ambient ionization density throughout the plasmasphere, but the effect is shown of removing the fluctuations at heights above 500, 750 and 1000 km. Using a height-distribution of phase-changing screens, calculations are made, for evening and presunrise conditions, of the mean square fluctuations both of phase and of fractional amplitude for situations in which an Earth terminal and a stationary satellite are both in the magnetic equatorial plane. Heights of equivalent single phase-changing screens are deduced for both phase and amplitude fluctuations; they are different from each other and from the height of maximum ionization density. It is concluded that the weak scattering theory can satisfactorily explain weak scintillation, but that amplitude scintillation at strengths of practical importance for radio communications requires the inclusion of refractive scattering in addition to diffractive scattering.  相似文献   

7.
A model of the ionospheric current system valid at zones close to the geomagnetic equator, taking into account the contribution of neutral winds, is proposed. From this, the external magnetic field at ground is calculated. Also, ground records of the geomagnetic field variations at the Peruvian equatorial zone were separated into their external and internal contributions. Using an iterative process a local particular fitting was found by comparing the separated external field to the one calculated with the proposed model.  相似文献   

8.
For a year of quiet solar-activity level, geomagnetic records from American hemisphere observatories located between about 0° and 30° north geomagnetic latitude were used to compare the annual and semiannual variations of the geomagnetic field associated with three separate contributions: (a) the quiet-day midnight level, MDT; (b) the solar-quiet daily variation, Sq; (c) the quiet-time lunar semidiurnal tidal variation, L(12). Four Fourier spectral constituents (24, 12, 8, 6 h periods) of Sq were individually treated. All three orthogonal elements (H, D and Z) were included in the study.The MDT changes show a dominant semiannual variation having a range of about 7 gammas in H and a dominant annual variation in Z having a range of over 8 gammas. These changes seem to be a seasonal response to the nightside distortions by magnetospheric currents. There is a slow decrease in MDT amplitudes with increasing latitude.The Sq changes follow the patterns expected from an equatorial ionospheric dynamo electrojet current system. The dominant seasonal variations occur in H having a range of over 21 gammas for the 24 h period and over 12 gammas for the 12 h period spectral components. The higher-order components are relatively smaller in size. The Sq(H) amplitudes decrease rapidly with increasing latitude. Magnetospheric contributions to the equatorial Sq must be less than a few per cent of the observed magnitude.The L(12) variation shows the ionospheric electrojet features by the dominance of H and the rapid decrease in amplitude with latitude away from the equator. However, the seasonal variation range of over 7 gammas has a maximum in early February and minimum in late June that is not presently explainable by the known ionospheric conductivity and tidal behavior.  相似文献   

9.
To study equatorial plasma bubble dynamics, telemetry signals (4 GHz) were recorded simultaneously from two geostationary satellites. INSAT-1B (74°E) and INSAT-1C (94°E) at Sikandarabad satellite Earth station (dip 42.0°) from January to December 1989 and at the Chenglepet satellite Earth station (dip 10.5°) during September–October 1989 along the same geomagnetic meridian. The characteristics and occurrence pattern of the scintillations suggest that these are equatorial plasma bubble induced events. Observations from the two satellites recorded simultaneously at each of these locations were utilized to estimate the east-west plasma bubble irregularity motion. Plasma bubble rise velocities over the magnetic equator were calculated from the systematic onset time differences observed between an equatorial and a low latitude station. The east-west plasma bubble velocity estimated at Sikandarabad, corresponding to 1200 km altitude in the equatorial plane, shows a night time variation pattern with a peak at around 2100 LT. The mean values over Chenglepet, which correspond to 400 km altitude, start decreasing right from 1900 LT and seem to be influenced by the plasma bubble rise velocities. The differences in magnitude observed between the present results and those reported elsewhere by other techniques are interpreted in terms of vertical shears in the plasma zonal flow over the equator. The near alignment of the two observing stations along a common geomagnetic meridian and the simultaneous use of two satellites located twenty degrees apart in longitude provided an excellent data base to study plasma bubble dynamics.  相似文献   

10.
The simplest index of geomagnetic activity is the range in nT from maximum to minimum value of the field in a given time interval. The hourly range R was recommended by IAGA for use at observatories at latitudes greater than 65°, but was superceded by AE. The most used geomagnetic index K is based on the range of activity in a 3 h interval corrected for the regular daily variation. In order to take advantage of real time data processing, now available at many observatories, it is proposed to introduce a 1 h range index and also a 3 h range index. Both will be computed hourly, i.e. each will have a series of 24 per day, the 3 h values overlapping. The new data will be available as the range (R) of activity in nT and also as a logarithmic index (I) of the range. The exponent relating index to range in nT is based closely on the scale used for computing K values.The new ranges and range indices are available, from June 1987, to users in real time and can be accessed by telephone connection or computer network. Their first year of production is regarded as a trial period during which their value to the scientific and commercial communities will be assessed, together with their potential as indicators of regional and global disturbances' and in which trials will be conducted into ways of eliminating excessive bias at quiet times due to the rate of change of the daily variation field.  相似文献   

11.
On the basis of geomagnetic activity indices Dst and solar wind parameters (velocity and density), we calculate the kinetic energy of the equatorial ring-current during the development of a magnetic storm, following the hypothesis of Sckopke's theorem.Supposing that the relaxation mechanisms of the plasmaspheric drift current which lead to the pre-storm state are always present and depend solely on the kinetic energy, it is found that the major part of the energy gain is lost, except during the main phase, when the interplanetary magnetic field permits it to be stored.  相似文献   

12.
The occurrence of spread-F from seven latitude regions for ionosonde stations (78 in all) located from L-shell = 3.3 to 1.05 has been investigated (using the superposed-epoch technique) relative to four different levels of geomagnetic activity. Data for 14.5 years were used. For moderate, high and very-high geomagnetic activity a significant peak in spread-F occurrence is found for the four latitude regions closest to the auroral zone. These peaks are delayed (after the geomagnetic activity) by a matter of days, the delays being greater for the lower levels of activity and also greater for regions further from the auroral zone. Similarly, delayed dips in spread-F occurrence are found for very-low geomagnetic activity. Analyses for the remaining three regions (those closest to the equator) failed to show corresponding delayed peaks or dips in the occurrence of spread-F relative to the appropriate levels of geomagnetic activity. It is suggested that (for the three highest levels of geomagnetic activity) the mechanism which is responsible for the suppression of spread-F in equatorial regions may operate at these low latitudes and thus counterbalance the other mechanism which is responsible for the positive correlation found for the higher-latitude regions.  相似文献   

13.
In intervals in which the polarity of the main solar dipole field is stabilized, a 12 month wave occurs in geomagnetic activity (indices aa, Ap, Dst) with its maximum in one of the equinoctial periods. Whether the vernal or the autumnal maximum is greater depends on the polarity of the main solar dipole; the existence of the wave may be explained by the north-south asymmetry in the main solar dipole field. The results favour the southward component of the interplanetary magnetic field as the decisive factor for geomagnetic activity.  相似文献   

14.
The thermosphere is primarily energised by the combination of three sources of energy and momentum. Solar UV and EUV energy is absorbed globally on the dayside within the middle and upper thermosphere. There is a persistent, but highly variable, inflow of energy and momentum from the magnetosphere. These magnetospheric inputs are usually confined to high latitudes, except at times of very large geomagnetic disturbances. Tides and gravity waves upwell from their sources in the troposphere and stratosphere to deposit energy and momentum at levels from the middle mesosphere to the upper thermosphere. Solar EUV radiation between 120 ran and 250 nm photo-dissociates the molecules which dominate the composition of the lower thermosphere, in particular producing atomic oxygen which dominates the composition of the upper thermosphere. The combination of solar EUV radiation at wavelengths shorter than 120 nm, plus energetic (mainly) charged particles from the magnetosphere, also ionise the neutral constituents of the thermosphere, creating the ionosphere. Particularly at high latitudes, within the geomagnetic polar caps and auroral ovals, the energetic, dynamical and chemical coupling and interactions between the thermosphere and ionosphere dominate the structural and dynamical response of both the thermosphere and ionosphere to solar and geomagnetic inputs of energy and momentum.Comparisons between predictions using global thermosphere-ionosphere coupled models and comparable observational sets have shown encouraging agreement during periods of relatively quiet geomagnetic activity. This indicates that the major energetic, ionisation, chemical and dynamical processes and interactions can be described in models with reasonable accuracy. During periods of high geomagnetic activity, and particularly during major geomagnetic storms, large rapid disturbances of the thermosphere occur with extremely rapid variations. These disturbances are observed as large increases of temperature, density, major changes of neutral composition, and with the development of high speed wind flows and large amplitude waves which may propagate to affect the entire globe. Since the ionosphere is formed from thermospheric constituents and affected by thermospherc dynamics, the gross disturbances of the ionosphere during highly disturbed periods are related to contemporary changes of density, composition and flows of the thermosphere, as well as changes of ionisation sources and electric fields. Observations which describe the nature and scale of disturbances of the thermosphere during geomagnetic storms will be used, in combination with appropriate global numerical simulations, to aid interpretation of storm-time ionospheric phenomena. The role of energetic, dynamical and chemical coupling between the thermosphere and ionosphere is emphasised.  相似文献   

15.
During the past four decades scintillation methods have been used for remote-sensing distant plasmas and for providing high angular resolution in radioastronomy. This brief review illustrates some of the techniques employed and explains the underlying theory in simple physical terms; it is not intended to be a complete survey of all applications of scintillation.  相似文献   

16.
Average north polar currents for the winter season have been derived from geomagnetic hourly means at six levels of geomagnetic activity. The twin-vortex pattern, normally associated with more disturbed conditions, persisted even on the quietest (mean Ap ≈ 1) days. When Ap increased to 24, the Harang discontinuity appeared earlier by about 3.5 h, though the current system as a whole remained unchanged in orientation. The average quiet day seems to be associated with a weak IMF oriented northwards and towards the Sun, with a low solar wind velocity and low proton temperature.  相似文献   

17.
When geomagnetic activity is moderate, the geosynchronous orbit crosses the plasmasphere bulge region in which the variations of plasma density from day to day can therefore be detected by geosynchronous satellites. The plasma density was measured by the Relaxation Sounder onboard ESA's GEOS-2 satellite. Variations of plasma density reflect the combined effects of refilling of particles from the ionosphere and loss of plasma by convection. The saturation level of the electron density at the geo-synchronous orbit and the refilling rate under different conditions of geomagnetic activity have been obtained and are found to be 70.5 cm−3 and 7–25 cm−3 day−1, respectively. In this paper the refilling morphology and the relationship between the refilling process and magnetic activity (Dst index) are analysed. The refilling rate or refilling time constant inferred from the data, either directly on fairly well-defined refilling events, or indirectly through a simple model, are found to compare reasonably well with the refilling time constant expected by theory. The observed correlation of refilling rate with Dst index is interpreted as resulting from the modification of the composition of the topside ionosphere occurring after intense storms.  相似文献   

18.
From data for the absorption of radio waves at oblique incidence in Lagos, and at vertical incidence at Colombo, the seasonal variation of absorption at the two sites are examined. It is shown that, if subsolar absorption be assumed to depend upon sunspot number, the cos X law gives the same index for both the diurnal and the seasonal variation of absorption.  相似文献   

19.
A great deal of accurate total density data from the CACTUS accelerometer experiment has been collected in equatorial regions during the last minimum of the solar cycle. Using these data, an analysis of the magnetically disturbed thermosphere has been performed with an improved resolution. Time delay of the response, latitudinal and longitudinal variations for solstice, day-time and night-time conditions have been studied. An attempt is made to interpret the behaviour of the thermosphere in the light of existing theories. An asymmetrical heating in latitude and a heating depending on longitude are needed in order to interpret the results.  相似文献   

20.
Data of Pc 1-type micropulsations and ionospheric absorption derived from measurements at mid-latitudes were analysed during and after geomagnetically disturbed periods. In comparison to the normal Pc 1 activity, a rather reduced one has been found during disturbed conditions. A distinct increase of Pc 1 activity occurred, however, after selected key days in the investigated interval between days ‘+2’ and ‘+7’. A clear after-effect could also be shown for ionospheric absorption, measured at three frequencies in Kühlungsborn (φ∼55°N) and a quite moderate one at somewhat lower geographic latitudes (φ ∼ 48°–49°N). In Kühlungsborn the ionospheric after-effect is particularly prominent at all investigated frequencies in case of a simultaneous after-effect in Pc 1 pulsations. It is restrained in the LF-range and missing in the MF-range when the after-effect is lacking in Pc 1 pulsations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号