首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Large‐scale conical and saucer‐shaped sand injectites have been identified in the Upper Miocene sediments of the Lower Congo Basin. These structures are evidenced on the 3D high‐resolution seismic data at about 600 ms TWT (two‐way traveltime) beneath the seabed. The conical and saucer‐shaped anomalies range from 20 to 80 m in height, 50 to 300 m in diameter, and 10 to 20 ms TWT in thickness. They are located within a sedimentary interval of about 100 m in thickness and are aligned over 20 km in dip direction (NE‐SW), above the NW margin of an underlying Upper Miocene submarine fan. We have interpreted the conical and saucer‐shaped anomalies as upward‐emplaced sand injectites sourced from the Upper Miocene fan because of their discordant character, the postsedimentary uplifting of the sediments overlying the cones and saucer‐shaped bodies, the alignment with the lateral fringe of the Upper Miocene submarine fan, and the geological context. Sand injection dates from the Miocene–Pliocene transition (approximately 5.3 Ma). The prerequisite overpressure to the sand injection process may be due to the buoyancy effect of hydrocarbons accumulated in the margins of the fan. Additionally, overpressure could have been enhanced by the lateral transfer of fluids operating in the inclined margins of the lobe. The short duration of sand injection and the presence of many sandstone intrusions suggested that the process of injection was triggered by an event, likely due to a nearby fault displacement related to diapiric movements. This is the first time that sand injectites of seismic scale have been described from the Lower Congo Basin. The localized nature of these injectites has led to a change in the migration path of fluids through the sedimentary cover. Consequently, the sand intrusions are both evidence and vectors of fluid migration within the basin fill.  相似文献   

2.
The permeability of continental crust is so highly variable that it is often considered to defy systematic characterization. However, despite this variability, some order has been gleaned from globally compiled data. What accounts for the apparent coherence of mean permeability in the continental crust (and permeability–depth relations) on a very large scale? Here we argue that large‐scale crustal permeability adjusts to accommodate rates of internal and external forcing. In the deeper crust, internal forcing – fluxes induced by metamorphism, magmatism, and mantle degassing – is dominant, whereas in the shallow crust, external forcing – the vigor of the hydrologic cycle – is a primary control. Crustal petrologists have long recognized the likelihood of a causal relation between fluid flux and permeability in the deep, ductile crust, where fluid pressures are typically near‐lithostatic. It is less obvious that such a relation should pertain in the relatively cool, brittle upper crust, where near‐hydrostatic fluid pressures are the norm. We use first‐order calculations and numerical modeling to explore the hypothesis that upper‐crustal permeability is influenced by the magnitude of external fluid sources, much as lower‐crustal permeability is influenced by the magnitude of internal fluid sources. We compare model‐generated permeability structures with various observations of crustal permeability.  相似文献   

3.
Vertical and lateral variations in lithology, salinity, temperature, and pressure determined from wireline LAS logs, produced water samples, and seismic data on the south flank of a salt structure on the continental shelf, offshore Louisiana indicate three hydrogeologic zones in the study area: a shallow region from 0 to 1.1 km depth with hydrostatically pressured, shale‐dominated Pleistocene age sediments containing pore waters with sea water (35 g l?1) or slightly above sea water salinity; a middle region from 1.1 to 3.2 km depth with near hydrostatically pressured, sand‐dominated Pliocene age sediments that contain pore waters that range from seawater salinity to up to 5 times sea water salinity (180 g l?1); and a deep section below 3.2 km depth with geopressured, shale‐dominated Miocene age sediments containing pore waters that range from sea water salinity to 125 g l?1. Salt dissolution has generated dense, saline waters that appear to be migrating down dip preferentially through the thick Pliocene sandy section. Sand layers that come in contact with salt contain pore waters with high salinity. Isolated sands have near sea water salinity. Salinity information in conjunction with seismic data is used to infer fluid compartmentalization. Both vertical and lateral lithologic barriers to fluid flow at tens to hundreds of meters scale are observed. Fluid compartmentalization is also evident across a supradomal normal fault. Offset of salinity contours are consistent with the throw of the fault, which suggests that saline fluids migrated before fault formation.  相似文献   

4.
CO2 injected into rock formations for deep geological storage must not leak to surface, since this would be economically and environmentally unfavourable, and could present a human health hazard. In Italy natural CO2 degassing to the surface via seeps is widespread, providing an insight into the various styles of subsurface ‘plumbing’ as well as surface expression of CO2 fluids. Here we investigate surface controls on the distribution of CO2 seep characteristics (type, flux and temperature) using a large geographical and historical data set. When the locations of documented seeps are compared to a synthetic statistically random data set, we find that the nature of the CO2 seeps is most strongly governed by the flow properties of the outcropping rocks, and local topography. Where low‐permeability rocks outcrop, numerous dry seeps occur and have a range of fluxes. Aqueous fluid flow will be limited in these low‐permeability rocks, and so relative permeability effects may enable preferential CO2 flow. CO2 vents typically occur along faults in rocks that are located above the water table or are low permeability. Diffuse seeps develop where CO2 (laterally supplied by these faults) emerges from the vadose zone and where CO2 degassing from groundwater follows a different flow path due to flow differences for water and CO2 gas. Bubbling water seeps (characterized by water bubbling with CO2) arise where CO2 supply enters the phreatic zone or an aquifer. CO2‐rich springs often emerge where valleys erode into CO2 aquifers, and these are typically high flux seeps. Seep type is known to influence human health risk at CO2 seeps in Italy, as well as the topography surrounding the seep which affects the rate of gas dispersion by wind. Identifying the physical controls on potential seep locations and seep type above engineered CO2 storage operations is therefore crucial to targeted site monitoring strategy and risk assessment. The surface geology and topography above a CO2 store must therefore be characterized in order to design the most effective monitoring strategy.  相似文献   

5.
The origins of increased stream flow and spring discharge following earthquakes have been the subject of controversy, in large part because there are many models to explain observations and few measurements suitable for distinguishing between hypotheses. On October 30, 2007 a magnitude 5.5 earthquake occurred near the Alum Rock springs, California, USA. Within a day we documented a several‐fold increase in discharge. Over the following year, we have monitored a gradual return towards pre‐earthquake properties, but for the largest springs there appears to be a permanent increase in discharge. The Alum Rock springs discharge waters that are a mixture between modern (shallow) meteoric water and old (deep) connate waters expelled by regional transpression. After the earthquake, there was a small and temporary decrease in the fraction of connate water in the largest springs. Accompanying this geochemical change was a small (1–2°C) temperature decrease. Combined with the rapid response, this implies that the increased discharge has a shallow origin. Increased discharge at these springs occurs both for earthquakes that cause static volumetric expansion and for those that cause contraction, supporting models in which dynamic strains are responsible for the subsurface changes that cause flow to increase. We make a quantitative comparison between the observed changes and model predictions for three types of models: (i) a permanent increase in permeability; (ii) an increase in permeability followed by a gradual decrease to its pre‐earthquake value; and (iii) an increase of hydraulic head in the groundwater system discharging at the springs. We show that models in which the permeability of the fracture system feeding the springs increases after the earthquake are in general consistent with the changes in discharge. The postseismic decrease in discharge could either reflect the groundwater system adjusting to the new, higher permeability or a gradual return of permeability to pre‐earthquake values; the available data do not allow us to distinguish between these two scenarios. However, the response of these springs to another earthquake will provide critical constraints on the changes that occur in the subsurface and should permit a test of all three types of models.  相似文献   

6.
M. B. Holness 《Geofluids》2003,3(2):89-102
A general feature of medium‐ to coarse‐grained, sheet‐silicate bearing, quartzo‐feldspathic rocks of either metamorphic or igneous affinity is the retrograde development of lenses of pure K‐feldspar at the grain boundaries between sheet silicate (0 0 1) faces and original feldspar grains. The growth of these lenses acts to displace and deform the sheet silicate grain by a force of crystallization, although the substrate feldspar and adjacent quartz are not deformed. Subsequent to the growth of the lenses they are replaced to variable degrees by pure albite, which grows into the lens from the substrate feldspar behind an irregular replacement front. The composition and texture of both K‐feldspar and replacive albite suggest a strong affinity with authigenic feldspars, although it is considered likely that the K‐feldspar of the lenses is derived from low‐temperature biotite‐breakdown reactions. A model is proposed whereby the lenses grow into open pores at dilatant sites in response to infiltration of aqueous fluids as the crystalline rocks are exhumed under brittle conditions. Continued circulation of infiltrating fluids in a temperature gradient results in the replacement of K‐feldspar by albite via an alkali exchange process. The lenses point to a significant grain‐scale permeability in crystalline rock at shallow levels in the crust.  相似文献   

7.
Although many hydrologic changes induced by teleseismic waves have been reported, the mechanism(s) responsible for the changes are usually not known. Permeability changes induced by seismic strains are often invoked to explain changes in water level. Using water‐level data in Taiwan after the 2008 Wenchuan earthquake, we show here that the observations cannot be properly explained by previously proposed models of postseismic permeability changes. A new model is required in which the postseismic permeability decreases exponentially as a function of time, with a time constant of <3 min, which is appreciably shorter than inferred from earlier studies. The result may have important implications for pore‐sealing mechanism(s).  相似文献   

8.
Cataclastic deformation bands, which are common in sandstone reservoirs and which may negatively affect fluid flow, are generally associated with notable thickness variations. It has been suggested previously that such thickness variations represent an important control on how deformation bands affect fluid flow. The effects of such thickness variations are tested in this study though statistical analysis and fluid flow simulation of an array of cataclastic deformation bands in Cretaceous sandstones in in the Bassin de Sud‐Est in Provence, France. Spatial outcrop data are statistically analyzed for incorporation in flow simulation models, and numerical simulations are used to investigate the effects of notable thickness variations on how the deformation bands influence effective permeability and flow dynamics. A suite of simulations is performed using a combination of fine‐scale and coarse‐scale grids, revealing that the effective permeability of the simulated reservoir is reduced by a factor of 15–25. More interestingly, the simulations further demonstrated that, as compared to the overall effect of the deformation band array on fluid flow, thickness variations along the bands proved to have negligible effects only. Thus, our simulations indicate that the configuration and connectivity of the deformation bands, together with the permeability contrast between the bands and the host rock and the mean band thickness, are the most important controls on the effective permeability. Our findings represent new insight into the influence of deformation bands on fluid flow in subsurface aquifers and reservoirs, indicating that thickness variations of individual deformation bands are of less significance than previously thought.  相似文献   

9.
We documented the porosity, permeability, pore geometry, pore type, textural anisotropy, and capillary pressure of carbonate rock samples collected along basin‐bounding normal faults in central Italy. The study samples consist of one Mesozoic platform carbonate host rock with low porosity and permeability, four fractured host rocks of the damage zones, and four fault rocks of the fault cores. The four fractured samples have high secondary porosity, due to elongated, connected, soft pores that provide fluid pathways in the damage zone. We modeled this zone as an elastic cracked medium, and used the Budiansky–O'Connell correlation to compute its permeability from the measured elastic moduli. This correlation can be applied only to fractured rocks with large secondary porosity and high‐aspect ratio pores. The four fault rock samples are made up of survivor clasts embedded in fine carbonate matrices and cements with sub‐spherical, stiff pores. The low porosity and permeability of these rocks, and their high values of capillary pressure, are consistent with the fault core sealing as much as 77 and 140 m of gas and oil columns, respectively. We modeled the fault core as a granular medium, and used the Kozeny–Carmen correlation, assigning the value of 5 to the Kozeny constant, to compute its permeability from the measured porosities and pore radii. The permeability structure of the normal faults is composed of two main units with unique hydraulic characteristics: a granular fault core that acts as a seal to cross‐fault fluid flow, and an elastic cracked damage zone that surrounds the core and forms a conduit for fluid flow. Transient pathways for along‐fault fluid flow may form in the fault core during seismic faulting due to the formation of opening‐mode fractures within the cemented fault rocks.  相似文献   

10.
Calcite veins in Paleoproterozoic granitoids on the Baltic Shield are the focus of this study. These veins are distinguished by their monomineralic character, unusual thickness and closeness to Neoproterozoic dolerite dykes and therefore have drawn attention. The aim of this study was to define the source of these veins and to unravel their isotopic and chemical nature by carrying out fine‐scale studies. Seven calcite veins covering a depth interval of 50–420 m below the ground surface and composed of breccias or crack‐sealed fillings typically expressing syntaxial growth were sampled and analysed for a variety of physicochemical variables: homogenization temperature (Th) and salinity of fluid inclusions, and stable isotopes (87Sr/86Sr, 13C/12C, 18O/16O), trace‐element concentrations (Fe, Mn, Mg, Sr, rare earth elements) and cathodoluminescence (CL) of the solid phase. The fluid‐inclusion data show that the calcites were precipitated mainly from relatively low‐temperature (Th = 73–106°C) brines (13.4–24.5 wt.% CaCl2), and the 87Sr/86Sr is more radiogenic than expected for Rb‐poor minerals precipitated from Neoproterozoic fluids. These features, together with the distribution of δ13C and δ18O values, provide evidence that the calcite veins are not genetic with the nearby Neoproterozoic dolerite dykes, but are of Paleozoic age and were precipitated from warm brines expressing a rather large variability in salinity. Whereas the isotopic and chemical variables express rather constant average values among the individual veins, they vary considerably on fine‐scale across individual veins. This has implications for understanding processes causing calcite‐rich veins to form and capture trace metals in crystalline bedrock settings.  相似文献   

11.
Progressive cementation and lithification significantly influence the mechanical and hydrologic properties of granular porous media through elastic stiffening and permeability reduction. We use published data that quantify the effect of grain‐bridging cement distribution in granular porous media at the grain scale to investigate the influence of variable cement content on the competing roles of hydrologic and mechanical effects on fluid flow and deformation at the reservoir scale. The impact of quartz overgrowths in natural samples was quantified using a bond‐to‐grain ratio, allowing a geologically meaningful interpretation of percent cement in conceptual models of quartz cementation. An increase in the bond‐to‐grain ratio from 1 to 2.2 (~1–15% cement by volume) results in a 1.4‐fold increase in Young's modulus and an ~1000‐fold decrease in permeability. The hydromechanical properties of a suite of variably cemented natural samples are used as input into two‐dimensional, kilometre‐scale, axially symmetric poroelastic models of an isotropic confined aquifer. Models isolating the hydrologic and mechanical effects of cementation indicate that the hydrologic properties dominate the overall mechanical response, controlling both the volume and magnitude of deformation. Incorporation of changes in hydrologic properties due to cementation is therefore essential to capturing the first‐order physics of coupled aquifer behavior.  相似文献   

12.
This article reports the results of using a sector‐scan sonar to record diverse submerged archaeological sites in shallow and deep water. The Kongsberg MS1000 sector‐scan sonar was developed for commercial applications, typically underwater inspections of bridges, dams, ports and harbours. The ability of the device to rapidly generate high‐quality, geometrically accurate scans of submerged features, coupled with its ease of use and deployment make it a potentially important, yet largely overlooked, tool for survey and management of underwater archaeological sites. As one of several technologies available, the paper examines its advantages and limitations, and considers, through case studies, under which conditions it is most effectively deployed.  相似文献   

13.
This paper explores the application of quick, simple and low‐cost procedures for data collection in commercial‐driven ‘salvage’ archaeology. In large‐scale cemetery contexts, the collection of a meaningful data set is often under extreme time and cost constraints. This requires the application of tailored field techniques and interdisciplinary collaboration between archaeologists, anthropologists and developers in order to maximise results. The authors examine procedures recently utilised to document and preserve skeletal data in three post‐mediaeval cemeteries in Prague, and evaluate their efficacy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of this study was to determine the process–structure–property relationships between the pre‐ and post‐CO2 injection pore network geometry and the intrinsic permeability tensor for samples of core from low‐permeability Lower Triassic Sherwood Sandstone, UK. Samples were characterised using SEM‐EDS, XRD, MIP, XRCT and a triaxial permeability cell both before and after a three‐month continuous‐flow experiment using acidic CO2‐rich saline fluid. The change in flow properties was compared to those predicted by pore‐scale numerical modelling using an implicit finite volume solution to the Navier–Stokes equations. Mass loss and increased secondary porosity appeared to occur primarily due to dissolution of intergranular cements and K‐feldspar grains, with some associated loss of clay, carbonate and mudstone clasts. This resulted in a bulk porosity increase from 18 to 25% and caused a reduction in mean diameter of mineral grains with an increase in apparent pore wall roughness, where the fractal dimension, Df, increased from 1.68 to 1.84. All significant dissolution mass loss occurred in pores above c. 100 μm mean diameter. Relative dilation of post‐treatment pore area appeared to increase in relation to initial pore area, suggesting that the rate of dissolution mass loss had a positive relationship with fluid flow velocity; that is, critical flow pathways are preferentially widened. Variation in packing density within sedimentary planes (occurring at cm‐scale along the ‐z plane) caused the intrinsic permeability tensor to vary by more than a factor of ten. The bulk permeability tensor is anisotropic having almost equal value in ‐z and ‐y planes but with a 68% higher value in the ‐x plane (parallel to sedimentary bedding planes) for the pretreated sample, reducing to only 30% higher for the post‐treated sample. The intrinsic permeability of the post‐treatment sample increased by one order of magnitude and showed very close agreement between the modelled and experimental results.  相似文献   

15.
In polyorogenic regions, the superposition of structures during a protracted tectonic history produces complex fractured bedrock aquifers. Thrust‐faulted regions, in particular, have complicated permeability patterns that affect groundwater flow paths, quantity, and quality. In the Appalachian foreland of northwestern Vermont, numerous bedrock wells that are spatially related to the Paleozoic Hinesburg thrust have elevated naturally occurring radioactivity and/or low yields. The association of groundwater quality and quantity issues with this thrust was a unique opportunity to investigate its structural and hydrogeologic framework. The Hinesburg thrust juxtaposed metamorphic rocks of the hanging wall with sedimentary rocks of the footwall during the Ordovician. It was then deformed by two orthogonal Devonian fold sets and was fractured during the Cretaceous. Median well yields in the hanging wall aquifer are significantly lower than those of the footwall aquifer, consistent with the respective permeability contrast between metamorphic and carbonate rocks. For wells drilled through the Hinesburg thrust, those completed closest (vertically) to the thrust have the highest median yields, whereas others completed farther below have yields in the footwall range. The geochemical signature of the hanging wall and footwall aquifers correlates with their whole‐rock geochemistry. The hanging wall aquifer is enriched in alpha radiation, Na+K‐Cl, Ba, and Sr, whereas the footwall aquifer is enriched in Ca‐Mg‐HCO3 and alkalinity. Wells that penetrated the Hinesburg thrust generally have hanging wall geochemical signatures. A simple hydrogeologic model for the permeability evolution of the Hinesburg thrust involves the ductile emplacement of a low‐K hanging wall onto a high‐K footwall, with subsequent modification by fractures.  相似文献   

16.
The Devonian Antrim Shale is an organic‐rich, naturally fractured black shale in the Michigan Basin that serves as both a source and reservoir for natural gas. A well‐developed network of major, through‐going vertical fractures controls reservoir‐scale permeability in the Antrim Shale. Many fractures are open, but some are partially sealed by calcite cements that retain isotopic evidence of widespread microbial methanogenesis. Fracture filling calcite displays an unusually broad spectrum of δ13C values (+34 to ?41‰ PDB), suggesting that both aerobic and anaerobic bacterial processes were active in the reservoir. Calcites with high δ13C values (>+15‰) record cementation of fractures from dissolved inorganic carbon (DIC) generated during bacterial methanogenesis. Calcites with low δ13C values (13C values between ?10 and ?30‰ can be attributed to variable organic matter oxidation pathways, methane oxidation, and carbonate rock buffering. Identification of 13C‐rich calcite provides unambiguous evidence of biogenic methane generation and may be used to identify gas deposits in other sedimentary basins. It is likely that repeated glacial advances and retreats exposed the Antrim Shale at the basin margin, enhanced meteoric recharge into the shallow part of the fractured reservoir, and initiated multiple episodes of bacterial methanogenesis and methanotrophic activity that were recorded in fracture‐fill cements. The δ18O values in both formation waters and calcite cements increase with depth in the basin (?12 to ?4‰ SMOW, and +21 to +27‰ PDB, respectively). Most fracture‐fill cements from outcrop samples have δ13C values between ?41 and ?15‰ PDB. In contrast, most cement in cores have δ13C values between +15 and +34‰ PDB. Radiocarbon and 230Th dating of fracture‐fill calcite indicates that the calcite formed between 33 and 390 ka, well within the Pleistocene Epoch.  相似文献   

17.
A group of 400–500 m long, bedding‐parallel calcite veins are exposed in the central La Popa Basin of northeastern Mexico. These veins provide a unique opportunity to determine the kilometer‐scale fluid–rock system associated with bedding‐parallel vein formation, and to test for sampling bias in studies that often use one or two samples to constrain the characteristics of regional‐scale paleohydrogeological systems. We use fluid inclusion microthermometry in conjunction with measurements of δ13C, δ18O, and 87Sr/86Sr ratios to constrain the vein‐forming fluid temperatures, compositions and sources, and compare these values along and between the veins to establish the homogeneity of the vein‐forming fluids and fluid–rock system. The δ13C values of the veins are close to those of the host rock, and average – 3.96‰ (PDB). The δ18O values of the veins are typically 1‰ lower than those of the host rocks, and average – 9.54‰ (PDB). Fluid inclusion homogenization temperatures average 137°C and inclusion salinities are all <6 wt% NaCl equivalent. The 87Sr/86Sr ratios of the veins average 0.70731 and are substantially lower than the values expected for the host rock. Calculated fluid δ18O values range from 4 to 10‰ (SMOW). The isotopic and microthermometric data indicate the veins most likely formed at depths of 3–4 km when meteoric water mixed with upward migrating, warm basinal brines. Vein microstructures and field characteristics indicate they formed from multiple slip events that most likely were associated with transport of individual fluid pulses that migrated along bedding planes. The large‐scale homogeneity of vein geochemistry is remarkable and demonstrates that only one or two samples would be sufficient to accurately characterize the kilometer‐scale paleohydrogeological system for these veins.  相似文献   

18.
The geometry of mineral deposits can give insights into fluid flow in shear zones. Lode gold ore bodies at Renco Mine, in the Limpopo Belt, Zimbabwe, occur as siliceous breccias and mylonites within amphibolite facies shear zones that dip either gently or steeply. The two sets of ore bodies formed synchronously from hydrothermal fluids. The ore bodies are oblate, but have well‐defined long axes. Larger ore bodies are more oblate. High‐grade gold ore shoots have long axes that plunge down dip; this direction is perpendicular to the long axes of the low‐grade ore bodies. The centres of the high‐grade ore bodies align within the low‐grade ore bodies along strike in both gently and steeply dipping groups. The range of sizes and shapes of the ore bodies are interpreted as a growth sequence. Geometrical models are proposed for the gently and steeply dipping ore bodies, in which individual ore bodies grow with long axes plunging down dip, and merge to form larger, more oblate ore bodies. The models show that when three or more ore bodies coalesce, the long axis of the merged ore body is perpendicular to the component ore bodies, and that ore bodies in the deposit may have a range of shapes due to both growth of individual ore bodies, and their coalescence. The long axes of the high‐grade ore bodies are parallel to the shear directions of both the gently and steeply dipping dip slip shear zones, which were the directions of greatest permeability and fluid flow. The larger, lower grade bodies, which may have formed by coalescence, are elongate perpendicular to these directions.  相似文献   

19.
. Sylta 《Geofluids》2002,2(4):285-298
Exploration success relies on properly risking the hydrocarbon system relevant for each prospect. Accurate risking of secondary migration efficiencies has been difficult due to lack of simple procedures that relate rock properties such as permeability and entry pressures to migration velocities, oil stringer heights and saturations. In order to achieve improved estimates of charge probabilities, equations for the secondary migration process are formulated based upon the Darcy flow and buoyancy conditions. An analytical solution of the formulated equations is shown, making it possible to construct charts for efficiently assessing the column height of secondary migration hydrocarbon stringers. The average oil (hydrocarbon) saturation of the migrating stringer can be computed, making it easy to compute the permeability related, secondary migration losses. Inputs to the chart are hydrocarbon flow‐rates and flow‐path width, hydrocarbon viscosity and density, carrier bed dip, permeability and entry pressures. Outputs are stringer heights, hydrocarbon saturation, relative permeability, migration velocities and migration losses. A procedure for including the new equations into existing basin scale fluid flow simulators is outlined and a Java applet for calculating the properties is described. The Java applet is useful for sensitivity studies, and can also be used to test results from basin simulators with the new migration efficiency equations. The analytical solution suggests that many published methods for calculating hydrocarbon migration in fluid flow simulators will over‐estimate hydrocarbon saturations and therefore losses. Calculated migration velocities will also be too low.  相似文献   

20.
H. Lukesova  B. Holst 《Archaeometry》2021,63(1):216-226
Correct identification of textile fibres is an important issue in archaeology because the use of different materials can yield crucial information about the society that produced the textiles. Textiles made of plant and animal fibres can normally be easily distinguished, but to distinguish between different types of plant fibres, in particular different types of bast fibres, is difficult. Some years back it was shown that the features fibre diameter, lumen diameter, dislocation (nodes), and cross markings cannot be used on their own to distinguish between the typical bast fibres used for textiles in ancient Europe: flax, hemp, and nettle. Particularly not when only a few fibres are available for an examination so that statistical analysis is not possible, as is often the case in archaeology. The last two characterization features typically used to distinguish between bast fibres are cross‐section shape and lumen shape. In this paper, we present a study of retted and unretted fibres (in the stem) of flax, nettle, and hemp, and show that also cross‐section shape and lumen shape cannot be used as distinguishing features on their own.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号