首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cathodoluminescence (CL) images of quartz grains in the Appin Quartzite from the aureole of the Ballachulish Igneous Complex (Scotland) reveal a textural complexity that we interpret in the light of published models of the evolution of the contact aureole. Five distinct generations of quartz can be discriminated in CL. The oldest of these is a dark luminescing mottled quartz (Type 1 quartz) that occurs in the centres of pre‐existing grains, in samples collected from 210 m to 0.1 m from the contact. Dark mottled quartz is interpreted to be unrecrystallized material and has a regional metamorphic CL spectral signature. The onset of contact metamorphism resulted in grain growth visible in CL as a series of fine‐scale alternating bands of bright and dark luminescing material (Type 2 quartz), which we attribute to infiltration of repeated pulses of small amounts of H2O along grain boundaries. Close to the intrusion, a subgrain‐scale network of intragranular, bright luminescing features could have resulted from either intragranular microcrack‐controlled infiltration of H2O at high temperatures or intergranular cracking followed by grain growth (Type 3 quartz). Broad bands of bright material on grain boundaries in samples that are inferred to have undergone partial melting are interpreted as quartz crystallized from the melt phase (Type 4 quartz). The final stage in the textural development is marked by a series of aligned fractures, detected in CL by nonluminescing material (Type 5 quartz) and corresponding closely with trails of fluid inclusions. These fractures are interpreted as the pathways for late‐stage, low‐temperature, retrogressive fluids.  相似文献   

3.
Experimental studies reveal complex dissolution behavior of quartz in aqueous NaCl solutions at high temperature and pressure, involving variation from salting‐in to salting‐out that changes with temperature, pressure, and salt concentration. The behavior is not explainable by traditional electrostatic theory. An alternative hypothesis appeals to complexing of SiO2 with NaCl and can explain the observations. However, the hypothesis of complexing, as previously applied, is inadequate in several respects: it neglects polymerization of solute silica, regards the SiO2‐NaCl hybrid complex(es) as anhydrous, which seems unlikely, and invokes an incorrect stoichiometry of the hydrated silica monomer, now known to be Si(OH)4?2H2O. These neglected features can be incorporated into the complexing model in a revised formulation based on a simple thermodynamic analysis using existing quartz solubility data. The analysis leads to a quasi‐ideal solution model with silica monomers, dimers, and two distinct hydrous SiO2‐NaCl hybrid complexes with overall NaCl:H2O = 1:6, one Na‐bearing and one Cl‐bearing. Their (equal) molar concentrations (Xhc) are governed by a pressure‐ and temperature‐dependent equilibrium constant, , where aNacl and are the respective activities of the solvent components. The stability of the hybrid complexes (i.e., their concentration) is very sensitive to H2O activity. The entire set of experimental quartz‐solubility data at 700°C, 1–15 kbar, is reproduced with high fidelity by the expression (P is pressure in kbar), including the transition from low‐pressure salting‐in to high pressure salting‐out. The results indicate that hybrid SiO2‐NaCl complexes are the main hosts for dissolved silica at NaCl concentrations greater than 6 wt%, which are likely common in crustal fluids. At higher temperatures, approaching the critical end point in the system SiO2‐H2O, the model becomes progressively inaccurate, probably because polymers higher than the dimer become significant as SiO2 concentration increases.  相似文献   

4.
The solubility of quartz has been measured in a wide range of salt solutions at 800°C and 0.5 GPa, and in NaCl, CaCl2 and CsCl solutions and H2O–CO2 fluids at six additional PT conditions ranging from 400°C at 0.1 GPa to 800°C at 0.9 GPa. The experiments cover a wide range of compositions along each binary. At PT conditions where the density of pure water is low (0.43 g cm?3), addition of most salts produces an enhancement of quartz solubility at low to moderate salt concentrations (salt‐in effect), although quartz solubility falls with further decrease in XH2O. At higher fluid densities (0.7 g cm?3 and greater), the salt‐in effect is generally absent, although this depends on both the cation present and the actual PT conditions. The salt‐in effect is most readily produced by chloride salts of large monovalent cations, while CaCl2 only produced a salt‐in effect at the most extreme conditions of high‐T and low‐P investigated (800°C at 0.2 GPa). Under most crustal conditions, the addition of common salts to aqueous fluids results in a lowering of quartz solubility relative to that in pure water (salt‐out effect). Comparing quartz solubility in different fluids by calculating XH2O on the basis that all salts are fully associated under all conditions yields higher quartz solubility in solutions of monovalent salts than in solutions of divalent salts, absolute values are also influenced by cation radius. Quartz solubility measurements have been fitted to a Setchenow‐type equation, modified to take account of the separate effects of both the lowering of XH2O and the specific effects of different salts, which are treated as arising through distinct patterns of non‐ideal behaviour, rather than the explicit formation of additional silica complexes with salt components. Quartz solubility in H2O–CO2 fluids can be treated as ideal, if the solvation number of aqueous silica is taken as 3.5. For this system the solubility (molality) of quartz in the binary fluid, S is related to its solubility in pure water at the same PT conditions, So, by: Quartz solubility in binary salt systems (H2O–RCln) can be fitted to the relationship: where salt concentration mRCln is expressed as molality and the exponent b has a value of 1 except under conditions where salting‐in is observed at low salt concentrations, in which case it is <1. Under most crustal conditions, the solubility of quartz in NaCl solutions is given to a good approximation by: We propose that quartz solubility in multicomponent fluids can be estimated from an extended expression, calculating XH2O based on the total fluid composition (including dissolved gasses), and adding terms for each major salt present. Our experimental results on H2O–NaCl–CO2 fluids are satisfactorily predicted on this basis. An important implication of the results presented here is that there are circumstances where the migration of a fluid from one quartz‐bearing host into another, if it is accompanied by re‐equilibration through cation exchange, may lead to dissolution or precipitation of quartz even at constant P and T, with concomitant modification of the permeability structure of the deep crust.  相似文献   

5.
6.
A well‐developed fracture‐filling network is filled by dominantly Ca‐Al‐silicate minerals that can be found in the polymetamorphic rock body of the Baksa Gneiss Complex (SW Hungary). Detailed investigation of this vein network revealed a characteristic diopside→epidote→sphalerite→albite ± kfeldspar→chlorite1 ± prehnite ± adularia→chlorite2→chlorite3→pyrite→calcite1→calcite2→calcite3 fracture‐filling mineral succession. Thermobarometric calculations (two feldspar: 230–336°C; chlorites: approximately 130–300°C) indicate low‐temperature vein formation conditions. The relative succession of chlorites in the mineral sequence combined with the calculated formation temperatures reveals a cooling trend during precipitation of the different chlorite phases (Tchlorite1: 260 ± 32°C →Tchlorite2: 222 ± 20°C →Tchlorite3: 154 ± 13°C). This cooling trend can be supported by the microthermometry data of primary fluid inclusions in diopside (Th: 276–362°C) and epidote (Th: 181–359°C) phases. The identical chemical character (0.2–1.5 eq. wt% NaCl) of these inclusions mean that vein mineralization occurred in a same fluid environment. The high trace element content (e.g. As, Cu, Zn, Mn) and Co/Ni ratio approximately 1–5 of pyrite grains support the postmagmatic hydrothermal origin of the veins. The vein microstructure and identical fluid composition indicate that vein mineralization occurred in an interconnected fracture system where crystals grew in fluid filled cracks. Vein system formed at approximately <200 MPa pressure conditions during cooling from approximately 480°C to around 150°C. The rather different fluid characteristics (Th: 75–124°C; 17.5–22.6 eq. wt% CaCl2) of primary inclusions of calcite1 combining with the special δ18O signature of fluid from which this mineral phase precipitated refer to hydrological connection between the crystalline basement and the sedimentary cover.  相似文献   

7.
The Jian copper deposit, located on the eastern edge of the Sanandaj–Sirjan metamorphic zone, southwest of Iran, is contained within the Surian Permo‐Triassic volcano‐sedimentary complex. Retrograde metamorphism resulted in three stages of mineralization (quartz ± sulfide veins) during exhumation of the Surian metamorphic complex (Middle Jurassic time; 159–167 Ma), and after the peak of the metamorphism (Middle to Late Triassic time; approximately 187 Ma). The early stage of mineralization (stage 1) is related to a homogeneous H2O–CO2 (XCO2 > 0.1) fluid characterized by moderate salinity (<10 wt.% NaCl equivalent) at high temperature and pressure (>370°C, >3 kbar). Early quartz was followed by small amounts of disseminated fine‐grained pyrite and chalcopyrite. Most of the main‐ore‐stage (stage 2) minerals, including chalcopyrite, pyrite and minor sphalerite, pyrrhotite, and galena, precipitated from an aqueous‐carbonic fluid (8–18 wt.% NaCl equivalent) at temperatures ranging between 241 and 388°C during fluid unmixing process (CO2 effervescence). Fluid unmixing in the primary carbonaceous fluid at pressures of 1.5–3 kbar produced a high XCO2 (>0.05) and a low XCO2 (<0.01) aqueous fluid in ore‐bearing quartz veins. Oxygen and hydrogen isotope compositions suggest mineralization by fluids derived from metamorphic dehydration (δ18Ofluid = +7.6 to +10.7‰ and δD = ?33.1 to ?38.5‰) during stage 2. The late stage (stage 3) is related to a distinct low salinity (1.5–8 wt.% NaCl equivalent) and temperatures of (120–230°C) aqueous fluid at pressures below 1.5 kbar and the deposition of post‐ore barren quartz veins. These fluids probably derived from meteoric waters, which circulated through the metamorphic pile at sufficiently high temperatures and acquire the characteristics of metamorphic fluids (δ18Ofluid = +4.7 to +5.1‰ and δD = ?52.3 to ?53.9‰) during waning stages of the postearly Cimmerian orogeny in Surian complex. The sulfide‐bearing quartz veins are interpreted as a small‐scale example of redistribution of mineral deposits by metamorphic fluids. This study suggests that mineralization at the Jian deposit is metamorphogenic in style, probably related to a deep‐seated mesothermal system.  相似文献   

8.
Y. LIU  G. CHI  K. M. BETHUNE  B. DUBÉ 《Geofluids》2011,11(3):260-279
The Red Lake mine trend, a deformation zone in the Archean Red Lake greenstone belt that hosts the world‐class Campbell‐Red Lake gold deposit, is characterized by abundant foliation‐parallel iron‐carbonate ± quartz veins with banded colloform‐crustiform structures and cockade breccias overprinted by silicification and gold mineralization. There is an apparent incompatibility between the cavity‐fill structures of the veins and breccias (typically developed at shallow crustal depths) and the upper greenschist to lower amphibole facies metamorphic conditions recorded in the host rocks (indicating relatively deep environments). This, together with the development of veins along the foliation plane, represents an enigmatic problem that may be related to the interplay between fluid dynamics and stress field. We approach this problem through systematic study of fluid inclusion planes (FIPs) in the vein minerals, including the orientations of the FIPs and the pressure–temperature conditions inferred from fluid inclusion microthermometry. We find that fluid inclusions in the main stage vein minerals (pregold mineralization ankerite and quartz and syn‐ore quartz) are predominantly carbonic without a visible aqueous phase, whereas many inclusions in the postore stage contain an aqueous phase. Most FIPs are subvertical, and many are subparallel to the foliation. High fluid pressure coupled with the high wetting angles of the water‐poor, carbonic fluids may have been responsible for the abundance of brittle deformation features. The development of subvertical FIPs is interpreted to indicate episodic switching of the maximum principal compressive stress (σ1) from subhorizontal (perpendicular to the foliation) to subvertical (parallel to the foliation) orientation. The subvertical σ1 is favorable for the formation of foliation‐parallel veins, as fractures are preferentially opened along the foliation in such a stress regime, the origin of which may be linked to the fluid source.  相似文献   

9.
Previous observations of the intaglios on quartz cylinder seals from Western Asia suggested that they had been engraved by one or more of four basic techniques, that is, micro-chipping, filing, drilling and wheel-cutting. In this paper we test our earlier observations and interpretations experimentally. Examination and comparison of experimentally engraved features with the seal intaglios was made directly with a binocular microscope and also by examination of impressions with a scanning electron microscope. Successful replication was achieved using tools of flint, chalcedony, copper, bronze and iron together with quartz and emery abrasives.  相似文献   

10.
F. Wendler  A. Okamoto  P. Blum 《Geofluids》2016,16(2):211-230
Mineral precipitation in an open fracture plays a crucial role in the evolution of fracture permeability in rocks, and the microstructural development and precipitation rates are closely linked to fluid composition, the kind of host rock as well as temperature and pressure. In this study, we develop a continuum thermodynamic model to understand polycrystalline growth of quartz aggregates from the rock surface. The adapted multiphase‐field model takes into consideration both the absolute growth rate as a function of the driving force of the reaction (free energy differences between solid and liquid phases), and the equilibrium crystal shape (Wulff shape). In addition, we realize the anisotropic shape of the quartz crystal by introducing relative growth rates of the facets. The missing parameters of the model, including surface energy and relative growth rates, are determined by detailed analysis of the crystal shapes and crystallographic orientation of polycrystalline quartz aggregates in veins synthesized in previous hydrothermal experiments. The growth simulations were carried out for a single crystal and for grain aggregates from a rock surface. The single crystal simulation reveals the importance of crystal facetting on the growth rate; for example, growth velocity in the c‐axis direction drops by a factor of ~9 when the faceting is complete. The textures produced by the polycrystal simulations are similar to those observed in the hydrothermal experiments, including the number of surviving grains and crystallographic preferred orientations as a function of the distance from the rock wall. Our model and the methods to define its parameters provide a basis for further investigation of fracture sealing under varying conditions.  相似文献   

11.
Quartz veins in the early Variscan Monts d’Arrée slate belt (Central Armorican Terrane, Western France), have been used to determine fluid‐flow characteristics. A combination of a detailed structural analysis, fluid inclusion microthermometry and stable isotope analyses provides insights in the scale of fluid flow and the water–rock interactions. This research suggests that fluids were expelled during progressive deformation and underwent an evolution in fluid chemistry because of changing redox conditions. Seven quartz‐vein generations were identified in the metasedimentary multilayer sequence of the Upper Silurian to Lower Devonian Plougastel Formation, and placed within the time frame of the deformation history. Fluid inclusion data of primary inclusions in syn‐ to post‐tectonic vein generations indicate a gradual increase in methane content of the aqueous–gaseous H2O–CO2–NaCl–CH4–N2 fluid during similar P–T conditions (350–400°C and 2–3.5 kbar). The heterogeneous centimetre‐ to metre‐scale multilayer sequence of quartzites and phyllites has a range of oxygen‐isotope values (8.0–14.1‰ Vienna Standard Mean Ocean Water), which is comparable with the range in the crosscutting quartz veins (10.5–14.7‰ V‐SMOW). Significant differences between oxygen‐isotope values of veins and adjacent host rock (Δ = ?2.8‰ to +4.9‰ V‐SMOW) suggest an absence of host‐rock buffering on a centimetre scale, but based on the similar range of isotope values in the Plougastel Formation, an intraformational buffering and an intermediate‐scale fluid‐flow system could be inferred. The abundance of veins, their well‐distributed and isolated occurrence, and their direct relationship with the progressive deformation suggests that the intermediate‐scale fluid‐flow system primarily occurred in a dynamically generated network of temporarily open fractures.  相似文献   

12.
Here we present a database of responses by South African agate and chalcedony to heat treatment. This will assist analyses of heated stone tools not only in South African archaeological sites, but wherever heated agate and chalcedony pieces were knapped. The minerals are abundant worldwide. To replicate potential heating methods during the Stone Age we placed some minerals in a wood fire, some under coals, and others were buried in sediments beneath fires. Thermal responses include lustrous flaked surfaces, pot lid fractures, semi-circular internal fractures, rough internal surfaces, and crazing. Aerobic heating is implied by pot lid fractures. To explain the thermal responses we analyzed the minerals using X-ray fluorescence, Raman spectroscopy, and carbon and sulfur analyses. Our chalcedony contains more water and impurities than agate, making it more vulnerable to thermal damage. Our method of combining field experiments with chemical analyses has global applications even though we expect that mineral components of agate and chalcedony will vary slightly in different parts of the world.  相似文献   

13.
Thermally re‐equilibrated fluid inclusions are reported in natural fissure quartz (qtz1) from polymineralic veins in the diagenetic‐anchizonal clastic sedimentary rocks of the Ciñera‐Matallana coal basin (Variscan, NW Spain). Euhedral quartz formed during early fissure opening from an immiscible fluid mixture composed of a low salinity aqueous solution and a CH4‐rich vapour phase, at temperatures of about 110–120°C and pressures ranging from 15 to 56 MPa. Five textural types of re‐equilibration are recognised in progressive order of inclusion modification: scalloped, hairy, annular‐ring shaped, haloes and decrepitation clusters. These textures resulted from a combination of brittle fracturing and dissolution and re‐precipitation of quartz, with preferential loss of water. The thermal peak was short‐lived, but was high enough to induce extensive decrepitation of fluid inclusions in vein quartz throughout the entire basin. Enhanced temperatures can be related to the intrusion of diorites in the basin. Careful analysis of textural features in fluid inclusions from diagenetic and very low‐grade metamorphism environments constitutes a useful tool for recording basin thermal history.  相似文献   

14.
Worldwide, vein quartz was a commonly used raw material for stone tools but this material has proved difficult for archaeologists to analyse because many quartz assemblages appear to be comprised of amorphous pieces, not easily recognised as humanly modified or forming ‘tools’. This paper discusses the analysis of the debitage – focusing on the debitage fragmentation rate, the debitage, break, and fragment types, and the quantitative analysis of the complete flakes – resulting from experimental knapping of quartz, which formed part of a project which investigated the use of quartz in Irish prehistoric lithic traditions. The results have highlighted the complexity involved in analysing quartz assemblages, and the significant differences between the debitage products of quartz and chert knapping assemblages. While bipolar knapping is generally easy to differentiate from direct percussion, it is harder to differentiate between soft and hard hammer percussion.  相似文献   

15.
The Kahrizak volcanic field, south Tehran, in Iran, is composed dominantly of basalt and basaltic andesite that experienced variable degrees of alteration because of the low‐grade metamorphism (stage I) and hydrothermal activity (stage II). Stage I alteration, which occurred in response to the burial of volcanic rocks and their interaction with heated groundwater, is characterized by the formation of low‐temperature zeolite facies minerals in vesicles consisting mainly of fine‐grained mafic phyllosilicate (smectite, chlorite/smectite mixed layer) and zeolites (thomsonite, chabazite, gonnardite, natrolite, analcime, heulandite, and mordenite). Stage II mineralization occurred because of the activity of hydrothermal fluids that formed large crystals of heulandite, stilbite, mesolite/scolecite, natrolite, and analcime along with quartz and calcite in cavities and fractures. The elements necessary for the formation of alteration minerals (i.e. zeolites and mafic phyllosilicates) in Kahrizak were derived from the hydrolysis of olivine and volcanic glass as well as the alteration of plagioclase. Various mineral assemblages formed during stages I and II reflect changes in temperature, pressure, and fluid composition. The change from mafic phyllosilicates to zeolites species is caused by the decrease in Mg and Fe relative to Ca fluid activities. Zeolite assemblages of stage I, known to be formed at lower temperatures, show the general sequential order from older to younger: chabazite, thomsonite, gonnardite, and natrolite. This sequence is consistent with a hypothetical fluid evolution path with increasing Na+ relative to Ca2+ activity. The change to stage II, which consists of zeolites species (stilbite, scolecite, natrolite, mesolite, analcime, and heulandite) that formed at higher temperatures, can be attributed to a temperature increase and fluid influx caused by hydrothermal activity related to a later magmatic event in the region.  相似文献   

16.
分析了三种测量方法──多次激活、加剂量法和钉子技术的优缺点,并对细粒石英前剂量方法进行了专门研究。结果表明,细粒五英前剂量方法测量简便,减少了来自多次激活、试验剂量和归一引起的误差,最小可测年龄能达到几十年。  相似文献   

17.
The Jebel al‐Ma'taradh and its surroundings contain exceptional deposits of lithic raw materials, including flint and chert, but especially chalcedony, agate, carnelian, and chrysoprase. These deposits were intensively exploited during the Neolithic, and some of the artefacts produced entered the trade network that included settlements on the coast and inland, sometimes as far as 300 km. During earlier periods, probably as early as the Pleistocene, only flint was used. Between the sixth and the fourth millennia, carnelian and agate were exploited to make beads, which are found in the necropolises and settlements of the UAE.  相似文献   

18.
The majority of prehistoric lithic artefacts were fashioned from rocks and minerals no harder than quartz, and there is no prehistoric evidence for the working of harder materials, such as corundum and diamond. The earliest physical evidence for the use of corundum (ruby, sapphire) is thought to be the abrasive grit recovered from Bronze Age Minoan quartz beads (c. 1700–1500 bc ), while diamond is thought to have been used no earlier than 500 bc , in India. Here we show that corundum was worked c. 4000–3500 bc during the Neolithic period in China, in the form of polished axes from the Liangzhu and Sanxingcun cultures. We also present physical evidence that later Liangzhu axes (c. 2500 bc ), made from the same previously undescribed rock whose most abundant component is corundum, were polished to a mirror‐like finish with a diamond abrasive. Our findings, which are the first to support the use of corundum and diamond in a prehistoric context, may also help to explain the trademark feature of the Neolithic in China, vast quantities of finely polished nephrite jade artefacts.  相似文献   

19.
Fluid inclusion data provide pressure–temperature–time–composition (P–T–t–X) constraints for an episode of petroleum infiltration of the crystalline basement in South Norway. Petroleum inclusions associated with pyrobitumen occur in postmetamorphic quartz veins in the Modum Complex. Three groups of fluid compositions have been shown, ranging from CH4 ± CO2 to condensates with alkanes up to C15. The range in fluid composition is a result of petroleum decomposition at high temperature. Globular and massive pyrobitumen occurs in the quartz veins or in associated vein systems. Reflectance (%Rm) measurements of 3.20–3.35 correspond to a maximum temperature of 207–214°C for the pyrobitumen associated with group II and III inclusions. Geothermometry of chlorites included in the quartz show results of 226–231°C. Pressure conditions of trapping for all three groups of inclusion fluids have been estimated to 520–985 bar at 220°C. The pressure range is probably a result of fluctuations caused by repeated fracture opening and sealing due to seismic activity coupled with mineral growth. A lack of systematic textural relationships between the three groups of inclusions and similar pressure–temperature estimates for all fluid types indicate trapping at similar times and a process of rapid change. Fluid migration in fractures from an overlying, overpressured sedimentary basin into a dry, crystalline basement best explains the observed P–T–t–X constraints.  相似文献   

20.
A multimethod approach using petrography and strontium (Sr) isotopic analysis was applied to determine the geological source of 17 marble artefacts from the Roman town of Ammaia (Portugal). All samples are calcitic, with dolomite, quartz and muscovite as accessory minerals. The marbles are characteristically medium‐grained with a maximum grain size (MGS) between 0.98 mm and 1.82 mm, have a heteroblastic texture, and have curved to embayed calcite grain boundaries. 87Sr/86Sr values of marble leachates range from 0.708488 to 0.708639. Comparison with Hispanic and Mediterranean marbles suggests the Estremoz Anticline as the most likely source for the Ammaia marble, especially for architectural marble. This hypothesis is supported by the geographical proximity of the Estremoz marble district and the long and expensive overland transport required for other marbles to reach Ammaia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号