首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two rockets carrying identical spherical probe payloads were launched from Thumba to measure positive ion density of the mesosphere and lower thermosphere over an equatorial location. Data obtained show the presence of strong irregularities in the ion density. From the measured positive ion current, the spectra of the spatial density fluctuation, turbulent velocity, energy dissipation rate and eddy diffusion coefficients have been derived in the altitude range of 70–100 km. The results are found to be different from those at middle and high latitudes.  相似文献   

2.
The basic assumptions made when a Doppler radar is used to measure the mean and fluctuating components of the wind field in the middle atmosphere with various beam configurations are examined. Particular reference is made to the measurement of the various components of the Reynolds stress tensor associated with short period internal gravity waves. It is shown that it is not generally possible to measure the upward flux of horizontal momentum with the conventional Doppler radar beam configuration in the upper middle atmosphere and that an optimum beam configuration is that in which beams are directed at +θ,0 and − θ to the zenith in both the zonal and meridional planes. This allows five of the six components of the Reynolds stress tensor (all those except the horizontal transport of momentum) to be obtained directly from the mean square radial velocities. In addition, the mean wind components and, in principle, the horizontal divergence and stretching deformations may be obtained. The power spectrum of the horizontal velocity may also be calculated using only the assumption that the statistics of the motions are horizontally homogeneous.  相似文献   

3.
Refractive index fluctuations or turbulence in the mesosphere, stratosphere and troposphere are observed with the aid of the fast beam steerability of the MU (middle and upper atmosphere) radar which operates at 46.5 MHz with 1 MW peak radiation power and 8330 m2 antenna aperture. Morphology of the mesospheric and stratospheric turbulence is studied by making use of the high altitude and time resolutions. Sixteen beam observations based on the fast beam steerability reveal advection properties and spatial variability of echoing regions in the troposphere. These results demonstrate new possibilities for this system in the investigation of three dimensional structures of turbulence.  相似文献   

4.
Observations of upper mesospheric and lower thermospheric wind velocities obtained simultaneously over six days with MF Doppler and Spaced Antenna (SA) radars at Adelaide, Australia in November 1980 are presented. To obtain these measurements, the large (~ 1 km diameter) Buckland Park MF array was run in a dual beam Doppler radar configuration, and a portable SA radar was operated adjacent to the main array. Hourly mean values of wind velocity show considerable consistency, with cross correlation coefficients of about 0.6–0.8 for the entire observational period. However, agreement between the magnitudes of the wind velocities as measured by each technique is found to be significantly improved when the effect of the aspect sensitivity of the backscattering irregularities on the effective beam pointing angle of the Doppler radar beams is taken into account. This is also found to be true for SA and Doppler radar observations obtained in adjacent periods of 2–5 days over two years with the Buckland Park facility operating alternatively as a Doppler and SA radar. Some representative examples of these results are also presented and discussed. A preliminary comparison between MF Doppler and SA radar derived vertical wind velocities is also briefly considered.  相似文献   

5.
We have simultaneously observed wind motions in the altitude range of 5–90 km by means of the MU radar, rocketsondes and radiosondes. Dominant vertical scales of wind fluctuations due to gravity waves were 2–5 km in the lower stratosphere, about 5–15 km in the upper stratosphere and longer than 15 km in the mesosphere. The increase in the vertical scale with altitude is interpreted in terms of the saturation of upward propagating gravity waves. In the stratosphere, the observed vertical wavenumber spectra showed smaller amplitudes and more gradual slopes than the model values. Furthermore, the wind velocity variance in the stratosphere increases exponentially with an e-folding height of about 9 km, implying that the gravity waves were not fully saturated. On the other hand, the spectra in the upper stratosphere and mesosphere agreed fairly well with the model spectra. The variance in the mesosphere seems to cease increase of the wave amplitudes and agrees reasonably well with the model value.  相似文献   

6.
Some recent progress in the study of tides in the middle atmosphere are reviewed, with special emphasis placed on radar observations at high latitudes, as well as data analysis methods used in the calculation of tidal structures. Observations carried out outside the meteor zone with MST radars and satellites are also presented. Theoretical and numerical advances on the diurnal tide are extensively discussed. Finally, some outstanding problems, which we hope will be solved in the near future are raised: the existence of hemispheric asymmetries in tidal structure; the role played by non-migrating modes at meteor heights and short time scales variations of tides.  相似文献   

7.
This review deals with recent radar studies of gravity waves and tides in the middle atmosphere, roughly over regions of 10–30 and 60–90 km. The techniques are briefly discussed and their limitations are pointed out. In the troposphere-stratosphere region, buoyancy oscillations, gravity-wave critical-layer interactions, and gravity waves excited by cumulus convection have been observed. Pronounced short-period (10–20 min) waves have frequently been detected in the mesosphere, and in some cases these have been identified as evanescent and trapped gravity wave modes. Diurnal and semidiurnal tides have been observed in the stratosphere and mesosphere at low and mid latitudes, but the corresponding tidal modes are not unambiguously resolved. The need for obtaining more comprehensive data bases with the existing radar systems is emphasized for further tidal and wave studies in the middle atmosphere.  相似文献   

8.
Taking advantage of the newly developed volume scattering model for MST radar and the unique features of the Chung Li VHF radar, several novel observational techniques have been developed and implemented. Techniques such as oblique spaced antenna (OSA), the frequency domain analysis of spaced antenna data, the full spectrum analysis (FSA) and the multifrequency frequency domain interferometer (FDI) will be discussed and experimental results will be presented. Potential applications of the new techniques to study the dynamics of the middle atmosphere will be discussed.  相似文献   

9.
Magnetospheric electrons from hundreds of keV to over 10MeV in energy have been systematically measured at geostationary altitude (6.6 RE) for well over a decade. We find evidence of significant diurnal, solar-rotational (27-day), annual, and solar-cycle (11-yr) variations in the fluxes of the relativistic electron component. We have also used low-altitude satellite data and sounding rocket measurements to characterize the location and strength of the relativistic electron precipitation into the atmosphere. We conclude that the magnetospheric electrons, when dumped into the middle atmosphere, represent a very significant ionization source which affects the pattern of conductivity, electric fields, and atmospheric chemistry. These measurements—when combined with global atmospheric modeling—suggest that relativistic electrons provide a robust coupling mechanism to impose long-term solar wind and magnetospheric variability onto the Earth's deep atmospheric regions. A strong 11-yr cycle of relativistic electron effects is found in available atmospheric data sets.  相似文献   

10.
In November 1982 a partial reflection drifts system for the measurement of winds in the mesosphere and lower thermosphere was installed as part of the New Zealand Antarctic Research Programme at Scott Base (77.8 S, 166.7 E). Ross Island, Antarctica. The wind speed and direction are measured once an hour from echoes available at the time within a height range of 67–97 km. Initial observations made during December 1982, show westward winds between 70 and 90 km, reaching a broad maximum of about 25 m s−1 around 85 km. There is a strong (10 m s−1) meridional component away from the pole at heights of 85–95 km.  相似文献   

11.
Middle atmosphere electrodynamics at high latitudes differs significantly from the normally assumed picture of a passive region through which electric fields of external origin couple. Large Vm −1 electric fields, both horizontal and vertical, have been observed within bounded regions of the upper stratosphere and lower mesosphere. They seem to occur only in regions where the electrical conductivity is a few times 10−10 S m−1 or less and appear to be current limned. While low conductivity is necessary, it is not a sufficient condition for occurrence. The observed large horizontal electric fields were found to be anticorrelated with the local neutral wind. However, a generation mechanism of these electric fields is as yet unknown but must involve space charge separation rather than dynamo effects. Large variations in the conductivity were also observed to occur with fluctuations in magnetic activity, and these were found to be consistent with measured variations in energy deposition during auroral phenomena. Theoretical concepts of mapping of electric fields downward from the thermosphere along equipotential magnetic field lines were shown to hold qualitatively in the D-region at the mV m−1 level. Perturbations affecting such models were determined to be small.  相似文献   

12.
The meridional distributions of both total solar and net radiative heating rates have been obtained between 30 and 110 km at both the solstice and equinox using Fomichev et al.'s total radiative long wave cooling data in the calculations of the net radiative heating. The contributions to the solar heating of O3, O2, CO2 and H2O have been investigated. For the ozone heating, the absorption of diffusive solar radiation from the ground and troposphere has been estimated. The 50–90 km layer is close to radiative equilibrium on a globally averaged basis. The importance of radiative cooling as an energy sink in the 90–110 km layer is apparently not less than that of the vertical eddy heat conduction. The ordered meridional circulation has been obtained under the assumption that the temperature variation, due to net radiative heating, is balanced by the adiabatic and temperature variations due to vertical air motion. The circulation model obtained is compared with other empirical models, which are reviewed. For the hemisphere and the 60–80 km layer, the two-cell circulation with the rising motion near the equator and pole from spring to autumn and above 80 km, the one-cell circulation with the sinking motion near the equator and equinox, seem to be most realistic. Also quite realistic for the period near the solstice is the same type of two-cell circulation in the 40–50 km layer and the sinking motion at low latitudes in the 50–60 km layer.  相似文献   

13.
An attempt is made at the statistical analysis of small-scale disturbances in the stratosphere and mesosphere with the aid of meteorological rocket observations at many stations from 77°N to 8°S for several years.By applying a high-pass filter to daily rocket data in the height range 20–65 km, wind and temperature fluctuations with characteristic vertical scales close to or less than 10 km are obtained, which are considered to be due to internal gravity waves. Results are expressed in terms of parameters which tend to emphasize smallscale vertical fluctuations and which should provide qualitative measures of gravity wave activity.It is found that the gravity wave activity shows a notable annual cycle in higher latitudes with the maximum in wintertime, while it shows a semiannual cycle in lower latitudes with the maxima around equinoxes. It is also found from the standard deviation around the monthly mean that the temporal variability of gravity waves is very large.  相似文献   

14.
Simultaneous observations of polar mesospheric summer echoes (PMSE) have been made with two different frequency radars during the launch of a sounding rocket designed to measure the fluctuations in the electron density in the same height range. The cross-section for radar backscatter deduced from the rocket probe data under the assumption of isotropic turbulence is in reasonable agreement with the measured signals at both 53.5 MHz with the mobile SOUSY radar and 224 MHz with the EISCAT VHF radar, which correspond to backscatter wavelengths of about 3 and 0.75 m, respectively. Some controversy exists over the relative roles of turbulent scatter vs specular reflections in PMSE. A number of characteristics of the data obtained in this experiment are consistent with nearly isotropic, intense meter-scale turbulence on this particular day. Since equally compelling arguments for the importance of an anisotropic-type mechanism have been presented by other experimenters studying PMSE, we conclude that both isotropic and anisotropic mechanisms must operate. We have found the inner scale for the electron fluctuation spectrum, which corresponds to the diffusive subrange for that fluid, and have compared it to the inner scale for the neutral gas. The latter was found from the Kolmogorov microscale, which in turn depends on the energy dissipation rate in the gas. We found the dissipation rate from the spectral width of the 53.5 MHz backscatter signal and from the rocket electron density fluctuation data. The diffusive subrange was found to occur at a wavelength a factor of about 10 times smaller than the viscous subrange. This corresponds to a Schmidt number of about 100. High Schmidt numbers have been reported in recent measurements of the diffusion coefficient of the electrons in this height range made with the EISCAT incoherent scatter radar. About 15 min after the rocket flight an extremely high radar reflectivity was found with the SOUSY system. We have been able to reproduce this high level theoretically by scaling the rocket data with an increase in the neutral turbulence energy dissipation rate by a factor of 14 as deduced from the SOUSY spectral width, an increase in the electron density which is consistent with riometer data, and a 33% decrease in the electron density gradient scale length which is hypothesized. We also estimate the radar reflectivity at 933 MHz and conclude that signals in excess of thermal scatter levels would have occurred at the peak of the event studied, provided that the electron fluctuation spectrum decreases as k−7 in the viscous subrange. If the spectrum has an exponential form, however, a turbulent source cannot explain the enhanced 933 MHz echoes reported by EISCAT.  相似文献   

15.
As part of the DYANA Programme, six rocket launchings (ship-borne) were conducted on three days in the equatorial region (Indian Ocean/Arabian Sea region). Using the temperature and wind data from these launchings, the diurnal and semi-diurnal tidal components in wind and temperature in the middle atmosphere are obtained and are compared with theoretical predictions. It is found that significant departures occur between the observed and theoretical values. The results are discussed in the light of current theoretical understanding of the tides.  相似文献   

16.
Using an equivalent gravity wave f-plane model it is shown that longitude variations in diurnal insolation absorption by tropospheric H2O can account for longitudinal variations of at least ± 12–15% about zonal mean values in the diurnal wind amplitude at low latitudes (0–20°) between 80 and 100 km, by virtue of the non-migrating propagating tidal modes which are excited. Phase variations of about ± 0.75 h also occur. These percentage variations are conservative estimates, since the background migrating (1,1,1) mode appears to be slightly (20–25%) overestimated in amplitude. In addition, the assumed eddy dissipation values, which appear necessary to model the breaking (1,1,1) mode, are larger than generally considered ‘reasonable’ by photochemical modellers. For a photochemically more reasonable eddy diffusion profile, estimates of longitude differences in diurnal wind amplitude are quite similar to the above values below 87 km, but increase to ± 17–25% near 100 km, with accompanying phase variations of ± 1–2 h about zonal mean values. In addition, it is shown that radiative damping by CO2 parameterized by a scale-dependent Newtonian cooling coefficient accounts for no more than a 20% reduction in the amplitudes of diurnal propagating tides above 80 km.  相似文献   

17.
A discussion is given of gravity wave saturation and its relation to eddy diffusion in the middle atmosphere. Attention is focused on the saturation process and some of its observable manifestations. It does not serve as a review of all related work. Although a theoretical point of view is taken, the emphasis is on which wave parameters need be measured to predict quantitatively the influence of gravity waves on eddy transport. The following considerations are stressed: the variation of spectra with observation time T; that eddy diffusivities are determined by velocity spectra; the anisotropic nature of diffusivity; a unified approach to saturation; an attempt to make eddy diffusivity more precise; the relationship between eddy diffusivity and wave dissipation.The subjects of ‘wave drag’ (momentum flux deposition) and heat flux need only be treated briefly, because they are related to eddy diffusivity in simple ways. Consideration is also given to two different theoretical mechanisms of wave saturation—wave induced convective instability and strong nonlinear wave interactions. The saturation theory is then used to predict a globally averaged height profile of vertical diffusivity in the middle atmosphere. This calculation shows that gravity waves are a major contributor to eddy diffusion from heights of 40–110 km, and that they are significant down to 20 km. A more detailed calculation of wave induced eddy diffusion, including latitudinal and seasonal variations, can be made if wave velocity spectra become available. The paper closes with recommendations for future research.  相似文献   

18.
In the high latitude wintertime mesosphere VHF radar measurements usually reveal several turbulence layers at heights between 65 and 85 km which are closely related to strong vertical wind shear. The turbulence layers are superposed by turbulence bursts, which often form sequences with periods similar to those of simultaneously observed velocity oscillations. The horizontal propagation velocity of the resulting turbulence structures can be obtained by cross-correlating the signal power time series measured at three antenna beam positions. A statistical study using a total of 71 events shows that there is a significant correlation between the propagation velocity of turbulence structures and the mean wind, being consistent with the assumption that turbulence is advected by large scale motions. It is suggested that the observed turbulence bursts are due to secondary static instabilities, which for their part are generated by primary Kelvin-Helmholtz instabilities in regions of strong wind shear.  相似文献   

19.
Main features of spatial distribution and time variations of meteorological parameters in the Southern hemisphere at altitudes 25–80 km are reviewed on the basis of zonal empirical models revised in 1982. Meridional distribution and seasonal variations are analysed. For comparison purposes with the Northern hemisphere, a model developed by Cole and Kantor in 1978 is used. It is revealed that the compilation of new models of the Southern hemisphere atmosphere has not resulted in substantial revision of hemispheric-structure outlined earlier in studies conducted in the Central Aerological Observatory. Meridional distribution of the parameters in summer is characterized by higher values of temperature, pressure and density gradients in the stratosphere of the Southern hemisphere than in that of the Northern hemisphere. This resulted in greater advancement of the core of the summer-time easterly (low towards the equator in the Southern hemisphere than in its northern counterpart. In winter, meridional temperature gradients in the middle stratosphere are greater in the Southern hemisphere than those in the Northern hemisphere, however, rapid attenuation of the gradients with height is observed in the Southern hemisphere, and above 35–40 km they become negative near 50–60°S, in contrast to positive values typical for the Northern hemisphere stratosphere. In the wind field, specific features of the Southern hemisphere westerly flow are high intensity and relatively low altitude of the maximum speed (as compared to the Northern hemisphere).The phases of the annual temperature wave at low latitudes are similar south and north of the equator; south of 30°S a reversal of the phase is observed. The semi-annual oscillation of temperature and wind is less pronounced in middle and high latitudes of the Southern hemisphere than in the Northern hemisphere.The origin of the primary differences between the hemispheres is related mainly to lower intensity of large-scale stratospheric processes in the Southern hemisphere as compared to those in the Northern hemisphere, which is confirmed by values of the standard deviation of the parameters in the two hemispheres.In summer, temperature and pressure fields based on satellite data are symmetric relative to the poles in both hemispheres. In winter, the distortion of the mean pressure field in the mesosphere may be as great in the Southern as in the Northern hemisphere.  相似文献   

20.
A brief review is given of some of the electrodynamic responses of the middle atmosphere to lightning. Attention is focused on the precipitation of energetic electrons from the magnetosphere, due to whistler mode electromagnetic waves. The secondary ionisation and bremsstrahlung radiation created, and some of the ways in which such effects can be detected, are also considered. Finally, the possibilities of positive feedback mechanisms operating between the atmosphere and the magnetosphere are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号