首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Main features of spatial distribution and time variations of meteorological parameters in the Southern hemisphere at altitudes 25–80 km are reviewed on the basis of zonal empirical models revised in 1982. Meridional distribution and seasonal variations are analysed. For comparison purposes with the Northern hemisphere, a model developed by Cole and Kantor in 1978 is used. It is revealed that the compilation of new models of the Southern hemisphere atmosphere has not resulted in substantial revision of hemispheric-structure outlined earlier in studies conducted in the Central Aerological Observatory. Meridional distribution of the parameters in summer is characterized by higher values of temperature, pressure and density gradients in the stratosphere of the Southern hemisphere than in that of the Northern hemisphere. This resulted in greater advancement of the core of the summer-time easterly (low towards the equator in the Southern hemisphere than in its northern counterpart. In winter, meridional temperature gradients in the middle stratosphere are greater in the Southern hemisphere than those in the Northern hemisphere, however, rapid attenuation of the gradients with height is observed in the Southern hemisphere, and above 35–40 km they become negative near 50–60°S, in contrast to positive values typical for the Northern hemisphere stratosphere. In the wind field, specific features of the Southern hemisphere westerly flow are high intensity and relatively low altitude of the maximum speed (as compared to the Northern hemisphere).The phases of the annual temperature wave at low latitudes are similar south and north of the equator; south of 30°S a reversal of the phase is observed. The semi-annual oscillation of temperature and wind is less pronounced in middle and high latitudes of the Southern hemisphere than in the Northern hemisphere.The origin of the primary differences between the hemispheres is related mainly to lower intensity of large-scale stratospheric processes in the Southern hemisphere as compared to those in the Northern hemisphere, which is confirmed by values of the standard deviation of the parameters in the two hemispheres.In summer, temperature and pressure fields based on satellite data are symmetric relative to the poles in both hemispheres. In winter, the distortion of the mean pressure field in the mesosphere may be as great in the Southern as in the Northern hemisphere.  相似文献   

2.
This review deals with recent radar studies of gravity waves and tides in the middle atmosphere, roughly over regions of 10–30 and 60–90 km. The techniques are briefly discussed and their limitations are pointed out. In the troposphere-stratosphere region, buoyancy oscillations, gravity-wave critical-layer interactions, and gravity waves excited by cumulus convection have been observed. Pronounced short-period (10–20 min) waves have frequently been detected in the mesosphere, and in some cases these have been identified as evanescent and trapped gravity wave modes. Diurnal and semidiurnal tides have been observed in the stratosphere and mesosphere at low and mid latitudes, but the corresponding tidal modes are not unambiguously resolved. The need for obtaining more comprehensive data bases with the existing radar systems is emphasized for further tidal and wave studies in the middle atmosphere.  相似文献   

3.
Irregular winds of the middle atmosphere, commonly attributed to gravity waves, often exhibit a vertical-wavenumber (m) spectral form approximating to Km−3 at sufficiently large m, with K a constant found to be relatively unvarying with time, location and even height. This behavior is widely believed to result from some saturation process, but the physical mechanism remains a matter for debate. There now exist three theories:
  • 1.(a) linear instability,
  • 2.(b) nonlinear wave-induced diffusion, and
  • 3.(c) nonlinear waveinduced Doppler spreading. Each has produced the Km−3 form (but only as an approximation in the case of Doppler spreading) and values of K within a factor of three of one another and of observed values.
New data have revealed circumstances in which an approximation to the form Km−3 is again found, suggestive of saturation, but with values of K that increase by a factor of 5 or 10 on moving from the stratopause to the mesopause region. This height variation is incompatible with theories (a) and (b) if the m−3 form is taken to be induced by the corresponding saturation process (rather than by source spectra), but is shown here to be compatible with the Doppler-spread theory. Because of the continued growth of K with height, which must ultimately cease, the observations and corresponding theory are taken to represent pseudosaturation rather than fully developed saturation per se.  相似文献   

4.
We have simultaneously observed wind motions in the altitude range of 5–90 km by means of the MU radar, rocketsondes and radiosondes. Dominant vertical scales of wind fluctuations due to gravity waves were 2–5 km in the lower stratosphere, about 5–15 km in the upper stratosphere and longer than 15 km in the mesosphere. The increase in the vertical scale with altitude is interpreted in terms of the saturation of upward propagating gravity waves. In the stratosphere, the observed vertical wavenumber spectra showed smaller amplitudes and more gradual slopes than the model values. Furthermore, the wind velocity variance in the stratosphere increases exponentially with an e-folding height of about 9 km, implying that the gravity waves were not fully saturated. On the other hand, the spectra in the upper stratosphere and mesosphere agreed fairly well with the model spectra. The variance in the mesosphere seems to cease increase of the wave amplitudes and agrees reasonably well with the model value.  相似文献   

5.
Wind fluctuations in the middle atmosphere behave like colored noise processes. They have a continuum of scales without dominant features and a power spectrum density (PSD) that often decays with frequency ƒ as ƒ−β. Spectral index β is generally obtained through least-square fit to PSD estimated by Fourier methods. Graphs of colored noise have fractal plane-filling properties depending on β. An efficient method for finding β using the fractal dimension (D), based on analysis of 1/ƒ noise in galactic X-ray luminosities by McHardy I. and Czerny B., (1987, Nature325, 696), is described. An empirical relation is found between D and β and its validity is confirmed in limiting cases. Then D is obtained from power-law dependence of a length metric L(μ) on scale μ. The method is applied to middle-atmospheric velocity data from the Poker Flat radar in Alaska. Variations of D follow those in β, from an earlier analysis by Bemraet al., (1986, Handbook for MAP20, 216), but show an offset of 0.1–0.2 even after corrections for outliers, gaps, and additive noise. Usefulness of this method for screening data as an aid to spectral analysis is examined.  相似文献   

6.
Local variation of atmospheric heating which might occur in inhomogeneities of various constituents such as ozone or molecular oxygen may generate gravity waves. These perturbations are induced by the terminator crossing constituent inhomogeneities of short lifetime. The quasi-point heating model developed here shows that the largest amplitude must appear vertically above the source, where the perturbation frequency is close to the Vaisala-Brunt frequency. Numerical calculations not band limited in the frequency suggest several characteristics of the perturbation.  相似文献   

7.
8.
Results of a General Circulation Model simulation of the dynamics of the middle atmosphere are shown focusing our attention to the tidal wave mean flow interaction and propagation of migrating diurnal and semidiurnal tides in the model. It is shown that migrating tidal waves are well simulated and the amplitude growth with height is effectively suppressed by the convective adjustment in the model. It is also shown that the dissipating solar diurnal tide plays an important role in inducing mean zonal winds in the low latitude region of the lower thermosphere. The behavior of non-migrating diurnal tides is also analyzed to show that non-migrating diurnal tides have significant amplitudes in the lower thermosphere. It is suggested that the non-migrating diurnal tide, which propagates against background mean zonal winds, has the possibility to propagate into the middle to high latitude region due to the Doppler effect.  相似文献   

9.
The first step is made in elaborating special methods to retrieve the planetary-scale waves for the stratosphere and mesosphere from measurements of thermal outgoing radiation. The method is adapted for the nadir sounding of Rossby normal modes of the Lamb wave type in the 15 μm CO2 band. The main formulae are presented in a dimensionless form. The proposed method consists of EOF filtering to extract a wave-induced signal and of Hermite polynomial expansions to describe the vertical structure of the wave. The accuracy of the retrievals is estimated; it is dependent on the duration of the record as well as on the number of channels. The method is able to provide a higher accuracy than currently available methods.  相似文献   

10.
Some recent progress in the study of tides in the middle atmosphere are reviewed, with special emphasis placed on radar observations at high latitudes, as well as data analysis methods used in the calculation of tidal structures. Observations carried out outside the meteor zone with MST radars and satellites are also presented. Theoretical and numerical advances on the diurnal tide are extensively discussed. Finally, some outstanding problems, which we hope will be solved in the near future are raised: the existence of hemispheric asymmetries in tidal structure; the role played by non-migrating modes at meteor heights and short time scales variations of tides.  相似文献   

11.
Vertically propagating gravity waves can transport momentum and energy from the troposphere up to the mesosphere and thus modify the circulation of the middle atmosphere. The effects of regional gravity wave sources, together with temporal changes of gravity wave activity, are studied under solstice conditions in a 3-D circulation model using a simplified parameterization scheme for the gravity momentum deposition. In this way we can reproduce the reversal of the mean zonal wind with height and very low temperatures at the summer mesopause region. Using a stochastic forcing by taking the gravity wave parameters at random, characteristic oscillations are found with periods in the planetary scale range (2, 4 and 5 days) and in the tidal range (1 day, 16 h and 12 h).  相似文献   

12.
In November 1982 a partial reflection drifts system for the measurement of winds in the mesosphere and lower thermosphere was installed as part of the New Zealand Antarctic Research Programme at Scott Base (77.8 S, 166.7 E). Ross Island, Antarctica. The wind speed and direction are measured once an hour from echoes available at the time within a height range of 67–97 km. Initial observations made during December 1982, show westward winds between 70 and 90 km, reaching a broad maximum of about 25 m s−1 around 85 km. There is a strong (10 m s−1) meridional component away from the pole at heights of 85–95 km.  相似文献   

13.
Middle atmosphere electrodynamics at high latitudes differs significantly from the normally assumed picture of a passive region through which electric fields of external origin couple. Large Vm −1 electric fields, both horizontal and vertical, have been observed within bounded regions of the upper stratosphere and lower mesosphere. They seem to occur only in regions where the electrical conductivity is a few times 10−10 S m−1 or less and appear to be current limned. While low conductivity is necessary, it is not a sufficient condition for occurrence. The observed large horizontal electric fields were found to be anticorrelated with the local neutral wind. However, a generation mechanism of these electric fields is as yet unknown but must involve space charge separation rather than dynamo effects. Large variations in the conductivity were also observed to occur with fluctuations in magnetic activity, and these were found to be consistent with measured variations in energy deposition during auroral phenomena. Theoretical concepts of mapping of electric fields downward from the thermosphere along equipotential magnetic field lines were shown to hold qualitatively in the D-region at the mV m−1 level. Perturbations affecting such models were determined to be small.  相似文献   

14.
The meridional distributions of both total solar and net radiative heating rates have been obtained between 30 and 110 km at both the solstice and equinox using Fomichev et al.'s total radiative long wave cooling data in the calculations of the net radiative heating. The contributions to the solar heating of O3, O2, CO2 and H2O have been investigated. For the ozone heating, the absorption of diffusive solar radiation from the ground and troposphere has been estimated. The 50–90 km layer is close to radiative equilibrium on a globally averaged basis. The importance of radiative cooling as an energy sink in the 90–110 km layer is apparently not less than that of the vertical eddy heat conduction. The ordered meridional circulation has been obtained under the assumption that the temperature variation, due to net radiative heating, is balanced by the adiabatic and temperature variations due to vertical air motion. The circulation model obtained is compared with other empirical models, which are reviewed. For the hemisphere and the 60–80 km layer, the two-cell circulation with the rising motion near the equator and pole from spring to autumn and above 80 km, the one-cell circulation with the sinking motion near the equator and equinox, seem to be most realistic. Also quite realistic for the period near the solstice is the same type of two-cell circulation in the 40–50 km layer and the sinking motion at low latitudes in the 50–60 km layer.  相似文献   

15.
Using an equivalent gravity wave f-plane model it is shown that longitude variations in diurnal insolation absorption by tropospheric H2O can account for longitudinal variations of at least ± 12–15% about zonal mean values in the diurnal wind amplitude at low latitudes (0–20°) between 80 and 100 km, by virtue of the non-migrating propagating tidal modes which are excited. Phase variations of about ± 0.75 h also occur. These percentage variations are conservative estimates, since the background migrating (1,1,1) mode appears to be slightly (20–25%) overestimated in amplitude. In addition, the assumed eddy dissipation values, which appear necessary to model the breaking (1,1,1) mode, are larger than generally considered ‘reasonable’ by photochemical modellers. For a photochemically more reasonable eddy diffusion profile, estimates of longitude differences in diurnal wind amplitude are quite similar to the above values below 87 km, but increase to ± 17–25% near 100 km, with accompanying phase variations of ± 1–2 h about zonal mean values. In addition, it is shown that radiative damping by CO2 parameterized by a scale-dependent Newtonian cooling coefficient accounts for no more than a 20% reduction in the amplitudes of diurnal propagating tides above 80 km.  相似文献   

16.
A two dimensional numerical model is used to compute the saturation of small scale gravity waves in the region near the critical level. The vertical wave number spectrum of horizontal velocity fluctuations in the unstable region (USR) where shear instability develops is found to be governed by wave-shear interaction and follows a theoretical saturation spectrum ~ωb2/2m3. Wave-shear interaction is also found to be responsible for the observed fact that the variance of vertical velocity fluctuations is significantly lower than the level predicted by linear gravity wave theory. On the other hand, the corresponding spectrum in the stable region (SR) following a much shallower spectrum ~m−2 is found to result from the combined effects of wave-wave interactions and eddy diffusion. The key step in our simulation is the separate parameterization of horizontal and vertical eddy diffusion coefficients instead of a constant molecular viscosity coefficient.  相似文献   

17.
Night-time observations of O(1D) λ630 nm and O(1S) λ558 nm thermospheric emissions were made at Mawson, Antarctica (67.6°S, 62.9°E) from 1982 to 1989, using a three-field photometer. Crossspectral analysis of the data was used to extract frequencies and horizontal trace velocities of periodic structures. Structures in the λ630 nm emission were characteristic of large-scale waves, and those in the λ558 nm emission were characteristic of medium-scale waves. The results showed distinct polarisation of the propagation azimuths; waves in the λ630 nm emission propagated approximately northwestward throughout the 8 yr period, whilst propagation azimuths of waves in the λ558 nm emission appeared to be solar-cycle-dependent. It is suggested that waves observed in the λ630 nm emission were of predominantly auroral electrojet origin, whilst those observed in the λ558 nm emission were of both auroral and tropospheric origin.  相似文献   

18.
Observations of atmospheric gravity waves have identified several occasions when a wave-group propagating upwards can be associated first with a sporadic-E layer whose total electron content varies periodically, and later with a disturbance in the F-region varying with the same period. This paper reports four examples of such behaviour.  相似文献   

19.
A brief review is given of some of the electrodynamic responses of the middle atmosphere to lightning. Attention is focused on the precipitation of energetic electrons from the magnetosphere, due to whistler mode electromagnetic waves. The secondary ionisation and bremsstrahlung radiation created, and some of the ways in which such effects can be detected, are also considered. Finally, the possibilities of positive feedback mechanisms operating between the atmosphere and the magnetosphere are investigated.  相似文献   

20.
As part of the DYANA Programme, six rocket launchings (ship-borne) were conducted on three days in the equatorial region (Indian Ocean/Arabian Sea region). Using the temperature and wind data from these launchings, the diurnal and semi-diurnal tidal components in wind and temperature in the middle atmosphere are obtained and are compared with theoretical predictions. It is found that significant departures occur between the observed and theoretical values. The results are discussed in the light of current theoretical understanding of the tides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号