首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A group of 400–500 m long, bedding‐parallel calcite veins are exposed in the central La Popa Basin of northeastern Mexico. These veins provide a unique opportunity to determine the kilometer‐scale fluid–rock system associated with bedding‐parallel vein formation, and to test for sampling bias in studies that often use one or two samples to constrain the characteristics of regional‐scale paleohydrogeological systems. We use fluid inclusion microthermometry in conjunction with measurements of δ13C, δ18O, and 87Sr/86Sr ratios to constrain the vein‐forming fluid temperatures, compositions and sources, and compare these values along and between the veins to establish the homogeneity of the vein‐forming fluids and fluid–rock system. The δ13C values of the veins are close to those of the host rock, and average – 3.96‰ (PDB). The δ18O values of the veins are typically 1‰ lower than those of the host rocks, and average – 9.54‰ (PDB). Fluid inclusion homogenization temperatures average 137°C and inclusion salinities are all <6 wt% NaCl equivalent. The 87Sr/86Sr ratios of the veins average 0.70731 and are substantially lower than the values expected for the host rock. Calculated fluid δ18O values range from 4 to 10‰ (SMOW). The isotopic and microthermometric data indicate the veins most likely formed at depths of 3–4 km when meteoric water mixed with upward migrating, warm basinal brines. Vein microstructures and field characteristics indicate they formed from multiple slip events that most likely were associated with transport of individual fluid pulses that migrated along bedding planes. The large‐scale homogeneity of vein geochemistry is remarkable and demonstrates that only one or two samples would be sufficient to accurately characterize the kilometer‐scale paleohydrogeological system for these veins.  相似文献   

2.
K. LI  C. CAI  H. HE  L. JIANG  L. CAI  L. XIANG  S. HUANG  C. ZHANG 《Geofluids》2011,11(1):71-86
Petrographic features, isotopes, and trace elements were determined, and fluid inclusions were analyzed on fracture‐filling, karst‐filling and interparticle calcite cement from the Ordovician carbonates in Tahe oilfield, Tarim basin, NW China. The aim was to assess the origin and evolution of palaeo‐waters in the carbonates. The initial water was seawater diluted by meteoric water, as indicated by bright cathodoluminescence (CL) in low‐temperature calcite. The palaeoseawater was further buried to temperatures from 57 to 110°C, nonluminescent calcite precipitated during the Silurian to middle Devonian. Infiltration of meteoric water of late Devonian age into the carbonate rocks was recorded in the first generation of fracture‐ and karst‐filling dull red CL calcite with temperatures from <50°C to 83°C, low salinities (<9.0 wt%), high Mn contents and high 86Sr/87Sr ratios from 0.7090 to 0.7099. During the early Permian, 87Sr‐rich hydrothermal water may have entered the carbonate rocks, from which precipitated a second generation of fracture‐filling and interparticle calcite and barite cements with salinities greater than 22.4 wt%, and temperatures from 120°C to 180°C. The hydrothermal water may have collected isotopically light CO2 (possibly of TSR‐origin) during upward migration, resulting in hydrothermal calcite and the present‐day oilfield water having δ13C values from ?4.3 to ?13.8‰ and showing negative relationships of 87Sr/86Sr ratios to δ13C and δ18O values. However, higher temperatures (up to 187°C) and much lower salinities (down to 0.5 wt%) measured from some karst‐filling, giant, nonluminescent calcite crystals may suggest that hydrothermal water was deeply recycled, reduced (Fe‐bearing) meteoric water heated in deeper strata, or water generated from TSR during hydrothermal water activity. Mixing of hydrothermal and local basinal water (or diagenetically altered connate water) with meteoric waters of late Permian age and/or later may have resulted in large variations in salinity of the present oilfield waters with the lowest salinity formation waters in the palaeohighs.  相似文献   

3.
Highly saline, deep‐seated basement brines are of major importance for ore‐forming processes, but their genesis is controversial. Based on studies of fluid inclusions from hydrothermal veins of various ages, we reconstruct the temporal evolution of continental basement fluids from the Variscan Schwarzwald (Germany). During the Carboniferous (vein type i), quartz–tourmaline veins precipitated from low‐salinity (<4.5wt% NaCl + CaCl2), high‐temperature (≤390°C) H2O‐NaCl‐(CO2‐CH4) fluids with Cl/Br mass ratios = 50–146. In the Permian (vein type ii), cooling of H2O‐NaCl‐(KCl‐CaCl2) metamorphic fluids (T ≤ 310°C, 2–4.5wt% NaCl + CaCl2, Cl/Br mass ratios = 90) leads to the precipitation of quartz‐Sb‐Au veins. Around the Triassic–Jurassic boundary (vein type iii), quartz–haematite veins formed from two distinct fluids: a low‐salinity fluid (similar to (ii)) and a high‐salinity fluid (T = 100–320°C, >20wt% NaCl + CaCl2, Cl/Br mass ratios = 60–110). Both fluids types were present during vein formation but did not mix with each other (because of hydrogeological reasons). Jurassic–Cretaceous veins (vein type iv) record fluid mixing between an older bittern brine (Cl/Br mass ratios ~80) and a younger halite dissolution brine (Cl/Br mass ratios >1000) of similar salinity, resulting in a mixed H2O‐NaCl‐CaCl2 brine (50–140°C, 23–26wt% NaCl + CaCl2, Cl/Br mass ratios = 80–520). During post‐Cretaceous times (vein type v), the opening of the Upper Rhine Graben and the concomitant juxtaposition of various aquifers, which enabled mixing of high‐ and low‐salinity fluids and resulted in vein formation (multicomponent fluid H2O‐NaCl‐CaCl2‐(SO4‐HCO3), 70–190°C, 5–25wt% NaCl‐CaCl2 and Cl/Br mass ratios = 2–140). The first occurrence of highly saline brines is recorded in veins that formed shortly after deposition of halite in the Muschelkalk Ocean above the basement, suggesting an external source of the brine's salinity. Hence, today's brines in the European basement probably developed from inherited evaporitic bittern brines. These were afterwards extensively modified by fluid–rock interaction on their migration paths through the crystalline basement and later by mixing with younger meteoric fluids and halite dissolution brines.  相似文献   

4.
We present a structural, microstructural, and stable isotope study of a calcite vein mesh within the Cretaceous Natih Formation in the Oman Mountains to explore changes in fluid pathways during vein formation. Stage 1 veins form a mesh of steeply dipping crack‐seal extension veins confined to a 3.5‐m‐thick stratigraphic interval. Different strike orientations of Stage 1 veins show mutually crosscutting relationships. Stage 2 veins occur in the dilatant parts of a younger normal fault interpreted to penetrate the stratigraphy below. The δ18O composition of the host rock ranges from 21.8‰ to 23.7‰. The δ13C composition ranges from 1.5‰ to 2.3‰. This range is consistent with regionally developed diagenetic alteration at top of the Natih Formation. The δ18O composition of vein calcite varies from 22.5‰ to 26.2‰, whereas δ13C composition ranges from ?0.8‰ to 2.1‰. A first trend observed in Stage 1 veins involves a decrease of δ13C to compositions nearly 1.3‰ lower than the host rock, whereas δ18O remains constant. A second trend observed in Stage 2 calcite has δ18O values up to 3.3‰ higher than the host rock, whereas the δ13C composition is similar. Stable isotope data and microstructures indicate an episodic flow regime for both stages. During Stage 1, formation of a stratabound vein mesh involved bedding‐parallel flow, under near‐lithostatic fluid pressures. The 18O fluid composition was host rock‐buffered, whereas 13C composition was relatively depleted. This may reflect reaction of low 13C CO2 derived by fluid interaction with organic matter in the limestones. Stage 2 vein formation is associated with fault‐controlled fluid flow accessing fluids in equilibrium with limestones about 50 m beneath. We highlight how evolution of effective stress states and the growth of faults influence the hydraulic connectivity in fracture networks and we demonstrate the value of stable isotopes in tracking changes in fluid pathways.  相似文献   

5.
L. Jiang  W. Pan  C. Cai  L. Jia  L. Pan  T. Wang  H. Li  S. Chen  Y. Chen 《Geofluids》2015,15(3):483-498
Permian hydrothermal activity in the Tarim Basin may have been responsible for the invasion of hot brines into Ordovician carbonate reservoirs. Studies have been undertaken to explain the origin and geochemical characteristics of the diagenetic fluid present during this hydrothermal event although there is no consensus on it. We present a genetic model resulting from the study of δ13C, δ18O, δ34S, and 87Sr/86Sr isotope values and fluid inclusions (FIs) from fracture‐ and vug‐filling calcite, saddle dolomite, fluorite, barite, quartz, and anhydrite from Ordovician outcrops in northwest (NW) Tarim Basin and subsurface cores in Central Tarim Basin. The presence of hydrothermal fluid was confirmed by minerals with fluid inclusion homogenization temperatures being >10°C higher than the paleo‐formation burial temperatures both in the NW Tarim and in the Central Tarim areas. The mixing of hot (>200°C), high‐salinity (>24 wt% NaCl), 87Sr‐rich (up to 0.7104) hydrothermal fluid with cool (60–100°C), low‐salinity (0 to 3.5 wt% NaCl), also 87Sr‐rich (up to 0.7010) meteoric water in the Ordovician unit was supported by the salinity of fluid inclusions, and δ13C, δ18O, and 87Sr/86Sr isotopic values of the diagenetic minerals. Up‐migrated hydrothermal fluids from the deeper Cambrian strata may have contributed to the hot brine with high sulfate concentrations which promoted thermochemical sulfate reduction (TSR) in the Ordovician, resulting in the formation of 12C‐rich (δ13C as low as ?13.8‰) calcite and 34S‐rich (δ34S values from 21.4‰ to 29.7‰) H2S, pyrite, and elemental sulfur. Hydrothermal fluid mixing with fresh water in Ordovician strata in Tarim Basin was facilitated by deep‐seated faults and up‐reaching faults due to the pervasive Permian magmatic activity. Collectively, fluid mixing, hydrothermal dolomitization, TSR, and faulting may have locally dissolved the host carbonates and increased the reservoir porosity and permeability, which has significant implications for hydrocarbon exploration.  相似文献   

6.
Metalliferous (Fe–Cu–Pb–Zn) quartz–carbonate–sulphide veins cut greenschist to epidote–amphibolite facies metamorphic rocks of the Dalradian, SW Scottish Highlands, with NE–SW to NW–SE trends, approximately parallel or perpendicular to regional structures. Early quartz was followed by pyrite, chalcopyrite, sphalerite, galena, barite, late dolomite–ankerite and clays. Both quartz–sulphide and carbonate vein mineralisation is associated with brecciation, indicating rapid release of fluid overpressure and hydraulic fracturing. Two distinct mineralising fluids were identified from fluid inclusion and stable isotope studies. High temperature (>350°C) quartz‐precipitating fluids were moderately saline (4.0–12.7 wt.% NaCl equivalent) with low (approximately 0.05). Quartz δ18O (+11.7 to +16.5‰) and sulphide δ34S (?13.6 to ?1.1‰) indicate isotopic equilibrium with host metasediments (rock buffering) and a local metasedimentary source of sulphur. Later, low‐temperature (TH = 120–200°C) fluids, probably associated with secondary carbonate, barite and clay formation, were also moderately saline (3.8–9.1 wt.% NaCl equivalent), but were strongly enriched in 18O relative to host Dalradian lithologies, as indicated by secondary dolomite–ankerite (δ18O = +17.0 to +29.0‰, δ13C = ?1.0 to ?3.0‰). Compositions of carbonate–forming fluids were externally buffered. The veins record the fluid–rock interaction history of metamorphic host rocks during cooling, uplift and later extension. Early vein quartz precipitated under retrograde greenschist facies conditions from fluids probably derived by syn‐metamorphic dehydration of deeper, higher‐grade rocks during uplift and cooling of the Caledonian metamorphic complex. Veins are similar to those of mesothermal veins in younger Phanerozoic metamorphic belts, but are rare in the Scottish Dalradian. Early quartz veins were reactivated by deep penetration of low‐temperature basin fluids that precipitated carbonate and clays in veins and adjacent Dalradian metasediments throughout the SW Highlands, probably in the Permo‐Carboniferous. This event is consistent with paragenetically ambiguous barite with δ34S characteristic of late Palaeozoic basinal brines.  相似文献   

7.
C. HILGERS  S. SINDERN 《Geofluids》2005,5(4):239-250
The source of fluid‐forming veins is of great importance in order to understand the hydraulic system acting in the earth's crust. The study of syntectonic antitaxial veins is one of the few methods by which the opening history can be deduced from rocks, and thus these veins are of primary importance in determining rock kinematics. Antitaxial veins were taken from black shales in two different tectonic settings in the Helvetic Alps, Switzerland, and the Taconic Appalachians, New York State. These syntectonic extension veins are regularly spaced and are oriented sub‐normal to bedding. The vein microstructure displays a symmetry around the median line in the centre of the vein, and a symmetry in cathodoluminescence banding parallel to the vein–wall interface, which suggests transport along bedding‐parallel dissolution planes from both vein‐walls. Antitaxial veins nucleated in transgranular fractures, but evidence for ongoing multiple crack‐seal increments is lacking; rather, veins grew continuously keeping close contact to the vein‐wall. Radiogenic 87Sr/86Sr ratios are higher in the surrounding matrix than in the vein, and higher than the corresponding seawater data in all samples. Variations are small and calcite in both the vein and the host rock were derived from the same source of fluid in the Helvetic samples. Mass balance of Sr suggests that the amount of calcite is too small in the surrounding host rock to be derived locally. Stable oxygen compositions are heavier in the host rock than in the veins, with overall low variation in both δ18O and δ13C values in the Mesozoic Helvetic samples. Data point to a rock‐buffered system, the precipitate most likely derived from an external source. The lower Palaeozoic Appalachian veins have lesser δ18O values than the host rock, similar to the Helvetic veins. Radiogenic 87Sr/86Sr data and a large heterogeneity in stable isotope values indicate an open system. Microstructural and isotopic evidence suggests that the antitaxial veins were formed by pervasive fluid flow, with the solute at least partly derived from an external source.  相似文献   

8.
The Baix Penedès Fault zone records successive karstic systems. The outcrops studied correspond to different segments of the fault, which were temporarily connected and disconnected, allowing for different diagenetic processes to occur. The first karstic system affected the Mesozoic rocks due to subaerial exposure after Paleogene compression, an event characterized by widespread dissolution and the generation of vug and cavern porosity. The δ18O values of the dolomitic sediment filling the initial vuggy porosity are similar to those of the host dolomite, indicating that the sediment comes from the erosion and reworking of the host rock. The second karstic system is related to the upward propagation of the Baix Penedès Fault. This deformation was characterized by random‐fracture fabrics with dolomite cement and sediment. The stable isotopes values and Sr/Ca ratios of both the dolomite cement and sediments are similar to those of the host rock. In contrast, the more depleted δ13C values indicate the influence of soil‐derived CO2 and the opening of the system to meteoric waters. During the third karstic event, the δ18O, δ13C, Sr/Ca ratios, and 87Sr/86Sr values of diagenetic cements suggest a marine signature, indicating that the karstic sediments were dolomitized under the influence of late Burdigalian‐Langhian marine waters. These marine waters were probably expelled from poorly buried sediments and circulated through faults producing dolomitization of the karstic sediments. A final karst system developed during a period of uplift and subaerial exposure. The δ18O values, the Mg/Ca and Sr/Ca ratios, and the high radiogenic values of the calcite cements formed during this period indicate precipitation from meteoric waters. The results of this study have implications for carbonate hydrocarbon reservoir analogs subject to karstic influence in the Valencia Trough and elsewhere.  相似文献   

9.
A well‐developed fracture‐filling network is filled by dominantly Ca‐Al‐silicate minerals that can be found in the polymetamorphic rock body of the Baksa Gneiss Complex (SW Hungary). Detailed investigation of this vein network revealed a characteristic diopside→epidote→sphalerite→albite ± kfeldspar→chlorite1 ± prehnite ± adularia→chlorite2→chlorite3→pyrite→calcite1→calcite2→calcite3 fracture‐filling mineral succession. Thermobarometric calculations (two feldspar: 230–336°C; chlorites: approximately 130–300°C) indicate low‐temperature vein formation conditions. The relative succession of chlorites in the mineral sequence combined with the calculated formation temperatures reveals a cooling trend during precipitation of the different chlorite phases (Tchlorite1: 260 ± 32°C →Tchlorite2: 222 ± 20°C →Tchlorite3: 154 ± 13°C). This cooling trend can be supported by the microthermometry data of primary fluid inclusions in diopside (Th: 276–362°C) and epidote (Th: 181–359°C) phases. The identical chemical character (0.2–1.5 eq. wt% NaCl) of these inclusions mean that vein mineralization occurred in a same fluid environment. The high trace element content (e.g. As, Cu, Zn, Mn) and Co/Ni ratio approximately 1–5 of pyrite grains support the postmagmatic hydrothermal origin of the veins. The vein microstructure and identical fluid composition indicate that vein mineralization occurred in an interconnected fracture system where crystals grew in fluid filled cracks. Vein system formed at approximately <200 MPa pressure conditions during cooling from approximately 480°C to around 150°C. The rather different fluid characteristics (Th: 75–124°C; 17.5–22.6 eq. wt% CaCl2) of primary inclusions of calcite1 combining with the special δ18O signature of fluid from which this mineral phase precipitated refer to hydrological connection between the crystalline basement and the sedimentary cover.  相似文献   

10.
Structural, petrographic, and isotopic data for calcite veins and carbonate host‐rocks from the Sevier thrust front of SW Montana record syntectonic infiltration by H2O‐rich fluids with meteoric oxygen isotope compositions. Multiple generations of calcite veins record protracted fluid flow associated with regional Cretaceous contraction and subsequent Eocene extension. Vein mineralization occurred during single and multiple mineralization events, at times under elevated fluid pressures. Low salinity (Tm = ?0.6°C to +3.6°C, as NaCl equivalent salinities) and low temperature (estimated 50–80°C for Cretaceous veins, 60–80°C for Eocene veins) fluids interacted with wall‐rock carbonates at shallow depths (3–4 km in the Cretaceous, 2–3 km in the Eocene) during deformation. Shear and extensional veins of all ages show significant intra‐ and inter‐vein variation in δ18O and δ13C. Carbonate host‐rocks have a mean δ18OV‐SMOW value of +22.2 ± 3‰ (1σ), and both the Cretaceous veins and Eocene veins have δ18O ranging from values similar to those of the host‐rocks to as low as +5 to +6‰. The variation in vein δ13CV‐PDB of ?1 to approximately +6‰ is attributed to original stratigraphic variation and C isotope exchange with hydrocarbons. Using the estimated temperature ranges for vein formation, fluid (as H2O) δ18O calculated from Cretaceous vein compositions for the Tendoy and Four Eyes Canyon thrust sheets are ?18.5 to ?12.5‰. For the Eocene veins within the Four Eyes Canyon thrust sheet, calculated H2O δ18O values are ?16.3 to ?13.5‰. Fluid–rock exchange was localized along fractures and was likely coincident with hydrocarbon migration. Paleotemperature determinations and stable isotope data for veins are consistent with the infiltration of the foreland thrust sheets by meteoric waters, throughout both Sevier orogenesis and subsequent orogenic collapse. The cessation of the Sevier orogeny was coincident with an evolving paleogeographic landscape associated with the retreat of the Western Interior Seaway and the emergence of the thrust front and foreland basin. Meteoric waters penetrated the foreland carbonate thrust sheets of the Sevier orogeny utilizing an evolving mesoscopic fracture network, which was kinematically related to regional thrust structures. The uncertainty in the temperature estimates for the Cretaceous and Eocene vein formation prevents a more detailed assessment of the temporal evolution in meteoric water δ18O related to changing paleogeography. Meteoric water‐influenced δ18O values calculated here for Cretaceous to Eocene vein‐forming fluids are similar to those previously proposed for surface waters in the Eocene, and those observed for modern‐day precipitation, in this part of the Idaho‐Montana thrust belt.  相似文献   

11.
The relationship between fracturing and fracture filling in opening‐mode fractures in the Triassic Buntsandstein in the Lower Saxony Basin (LSB; NW Germany) has been studied by an integration of petrographic and structural analysis of core samples, strontium isotope analysis and microthermometry on fluid inclusions. This revealed the relationship between the timing of the fracturing and the precipitation of different mineral phases in the fractures by constraining the precipitation conditions and considering the possible fluid transport mechanisms. The core was studied from four different boreholes, located in different structural settings across the LSB. In the core samples from the four boreholes, fractures filled with calcite, quartz and anhydrite were found, in addition to pore‐filling calcite cementation. In boreholes 2 and 3, calcite‐filled fractures have a fibrous microstructure whereas in borehole 1, fractures are filled with elongate‐blocky calcite crystals. Anhydrite‐filled fractures have, in all samples, a blocky to elongate‐blocky microstructure. Fractures that are filled with quartz are observed in borehole 2 only where the quartz crystals are ‘stretched’ with an elongated habit. Fluid inclusion microthermometry of fracturing‐filling quartz crystals showed that quartz precipitation took place at temperatures of at least 140°C, from a fluid with NaCl–CaCl2–H2O composition. Melting phases are meta‐stable and suggest growth from high salinity formation water. Strontium isotopes, measured in leached host rock, indicate that, in boreholes 2 and 3, the fluid which precipitated the calcite cements and calcite‐filled fractures is most likely locally derived whereas in borehole 1, the 87Sr/86Sr ratios from the pore‐filling cements and in the elongate‐blocky calcite‐filled fracture can only be explained by mixing with externally derived fluids. The elongate‐blocky anhydrite‐filled fractures, present in boreholes 1, 3 and 4, precipitated from a mixture of locally derived pore fluids and a significant quantity of fluid with a lower, less radiogenic, 87Sr/86Sr ratio. Taking into account the structural evolution of the basin and accompanying salt tectonics, it is likely that the underlying Zechstein is a source for the less radiogenic fluids. Based on the samples in the LSB, it is probable that fibrous fracture fillings in sedimentary rocks most likely developed from locally derived pore fluids whereas elongate‐blocky fracture fillings with smooth walls developed from externally derived pore fluids.  相似文献   

12.
This study presents the results of an isotopic analysis of nine naturally mummified individuals—three adults, two adolescents, one juvenile, and three infants—recovered from the Hets Mountain Cave site in southern Mongolia, where they had been secondarily deposited. All of the individuals show evidence of violent perimortem trauma, but no skeletal indicators of nutritional or disease-related stress. Multi-isotopic data (δ13C, δ15N, δ18O, 87Sr/86Sr, and 20nPb/204Pb) were characterized in multiple tissues from each individual when possible, in order to reconstruct diet composition and residential origin at different points in life. Specifically, δ13C and δ15N in bone carbonate and collagen (N = 8) and hair keratin (N = 4) were coupled with enamel carbonate δ18O and δ13C (N = 3) and enamel 87Sr/86Sr, and 20nPb/204Pb (N = 3) to assess diet and residential mobility in relation to skeletal indicators of health and trauma. Results are consistent with a persistence of mixed C3/C4 pastoral subsistence and general stability of diet composition over the life course, in contrast to contemporary accounts of widespread famine and a dependence on grains imported from China throughout the region. However, results also suggest that at least some individuals may have migrated to this region of southern Mongolia from elsewhere during life, meaning that their dietary isotopic profiles may not represent local subsistence patterns near the Hets Mountain Cave site. Overall, these results speak to the utility of life course oriented multi-isotopic analysis in complementing more top-down historical analyses in understanding variation in subsistence, nutrition, and migration in regions undergoing significant political and economic turmoil.  相似文献   

13.
L. Jia  C. Cai  H. Yang  H. Li  T. Wang  B. Zhang  L. Jiang  X. Tao 《Geofluids》2015,15(3):421-437
Petrographic features, C, O, S, and Sr isotopes were determined, and fluid inclusions (FI) were analyzed on various stages of vug‐ and fracture‐fillings from the Cambrian and Lower Ordovician reservoirs in the Tazhong area, Tarim basin, NW China. The aim was to assess the origin of pyrite and anhydrite and the processes affecting sulfur during diagenesis of the carbonates. Pyrite from seven wells has δ34S values from ?22‰ to +31‰. The pyrites with low δ34S values from ?21.8‰ to ?12.3‰ were found close to fracture‐filling calcites with vapor‐liquid double‐phase aqueous fluid inclusions homogenization temperatures (FI‐Th) from 55.7 to 73.2°C, salinities from 1.4wt% to 6.59wt% NaCl equiv and δ13C values from ?2.3‰ to ?14.2‰, indicating an origin from bacterial sulfate reduction by organic matter. Other sulfides with heavier δ34S values may have formed by thermochemical sulfate reduction (TSR) during two episodes. The earlier TSR in the Middle and Lower Cambrian resulted in pyrites and H2S having δ34S values from 30 to 33‰, close to those of bedded anhydrite and oilfield water (approximately 34‰). The later TSR is represented by calcites with δ13C values as light as ?17.7‰ and FI‐Th of about 120–145°C, and pyrite and H2S with δ34S values close to those of the Upper Cambrian burial‐diagenetic anhydrite (between +14.8‰ and +22.6‰). The values of the anhydrite are significantly lighter than contemporary seawater sulfates. This together with 87Sr/86Sr values of anhydrite and TSR calcites from 0.7091 to 0.7125 suggests a source from the underlying Ediacaran seawater sulfate and detrital Sr contribution.  相似文献   

14.
An integrated fluid inclusion and stable isotope study was carried out on hydrothermal veins (Sb‐bearing quartz veins, metal‐bearing fluorite–barite–quartz veins) from the Schwarzwald district, Germany. A total number of 106 Variscan (quartz veins related to Variscan orogenic processes) and post‐Variscan deposits were studied by microthermometry, Raman spectroscopy, and stable isotope analysis. The fluid inclusions in Variscan quartz veins are of the H2O–NaCl–(KCl) type, have low salinities (0–10 wt.% eqv. NaCl) and high Th values (150–350°C). Oxygen isotope data for quartz range from +2.8‰ to +12.2‰ and calculated δ18OH2O values of the fluid are between ?12.5‰ and +4.4‰. The δD values of water extracted from fluid inclusions vary between ?49‰ and +4‰. The geological framework, fluid inclusion and stable isotope characteristics of the Variscan veins suggest an origin from regional metamorphic devolatilization processes. By contrast, the fluid inclusions in post‐Variscan fluorite, calcite, barite, quartz, and sphalerite belong to the H2O–NaCl–CaCl2 type, have high salinities (22–25 wt.% eqv. NaCl) and lower Th values of 90–200°C. A low‐salinity fluid (0–15 wt.% eqv. NaCl) was observed in late‐stage fluorite, calcite, and quartz, which was trapped at similar temperatures. The δ18O values of quartz range between +11.1‰ and +20.9‰, which translates into calculated δ18OH2O values between ?11.0‰ and +4.4‰. This range is consistent with δ18OH2O values of fluid inclusion water extracted from fluorite (?11.6‰ to +1.1‰). The δD values of directly measured fluid inclusion water range between ?29‰ and ?1‰, ?26‰ and ?15‰, and ?63‰ and +9‰ for fluorite, quartz, and calcite, respectively. Calculations using the fluid inclusion and isotope data point to formation of the fluorite–barite–quartz veins under near‐hydrostatic conditions. The δ18OH2O and δD data, particularly the observed wide range in δD, indicate that the mineralization formed through large‐scale mixing of a basement‐derived saline NaCl–CaCl2 brine with meteoric water. Our comprehensive study provides evidence for two fundamentally different fluid systems in the crystalline basement. The Variscan fluid regime is dominated by fluids generated through metamorphic devolatilization and fluid expulsion driven by compressional nappe tectonics. The onset of post‐Variscan extensional tectonics resulted in replacement of the orogenic fluid regime by fluids which have distinct compositional characteristics and are related to a change in the principal fluid sources and the general fluid flow patterns. This younger system shows remarkably persistent geochemical and isotopic features over a prolonged period of more than 100 Ma.  相似文献   

15.
The Jian copper deposit, located on the eastern edge of the Sanandaj–Sirjan metamorphic zone, southwest of Iran, is contained within the Surian Permo‐Triassic volcano‐sedimentary complex. Retrograde metamorphism resulted in three stages of mineralization (quartz ± sulfide veins) during exhumation of the Surian metamorphic complex (Middle Jurassic time; 159–167 Ma), and after the peak of the metamorphism (Middle to Late Triassic time; approximately 187 Ma). The early stage of mineralization (stage 1) is related to a homogeneous H2O–CO2 (XCO2 > 0.1) fluid characterized by moderate salinity (<10 wt.% NaCl equivalent) at high temperature and pressure (>370°C, >3 kbar). Early quartz was followed by small amounts of disseminated fine‐grained pyrite and chalcopyrite. Most of the main‐ore‐stage (stage 2) minerals, including chalcopyrite, pyrite and minor sphalerite, pyrrhotite, and galena, precipitated from an aqueous‐carbonic fluid (8–18 wt.% NaCl equivalent) at temperatures ranging between 241 and 388°C during fluid unmixing process (CO2 effervescence). Fluid unmixing in the primary carbonaceous fluid at pressures of 1.5–3 kbar produced a high XCO2 (>0.05) and a low XCO2 (<0.01) aqueous fluid in ore‐bearing quartz veins. Oxygen and hydrogen isotope compositions suggest mineralization by fluids derived from metamorphic dehydration (δ18Ofluid = +7.6 to +10.7‰ and δD = ?33.1 to ?38.5‰) during stage 2. The late stage (stage 3) is related to a distinct low salinity (1.5–8 wt.% NaCl equivalent) and temperatures of (120–230°C) aqueous fluid at pressures below 1.5 kbar and the deposition of post‐ore barren quartz veins. These fluids probably derived from meteoric waters, which circulated through the metamorphic pile at sufficiently high temperatures and acquire the characteristics of metamorphic fluids (δ18Ofluid = +4.7 to +5.1‰ and δD = ?52.3 to ?53.9‰) during waning stages of the postearly Cimmerian orogeny in Surian complex. The sulfide‐bearing quartz veins are interpreted as a small‐scale example of redistribution of mineral deposits by metamorphic fluids. This study suggests that mineralization at the Jian deposit is metamorphogenic in style, probably related to a deep‐seated mesothermal system.  相似文献   

16.
We report δ18O and δ13C data from modern carbonate in soils and dung samples from 3 recently abandoned livestock corrals in northern Kenya. Calcium carbonate content is higher within ∼5 cm depth that contains a mixture of dung and surface soils of corrals than in soils below 5 cm depth. We radiocarbon dated carbonates from 0.5 to 40 cm depths in two corrals and one control site. Surface carbonates (0.5 cm) from the two corrals were formed from modern carbon (>1955) when the corrals were active, while all other carbon is >16,000 years (BP) old. Shallow carbonate is also enriched in 18O (δ18O up to 3.0‰) and depleted in 13C (δ13C up to −12.0‰) with respect to carbonate at deeper levels and at two control sites. The δ18O and δ13C of soil carbonates (δ18OSC and δ13CSC respectively) in corrals are inversely correlated for depths up to about 15 cm where organic carbon is greater than 0.5%. Below that depth, there is a positive correlation between δ18OSC and δ13CSC values, similar to that observed in a control site.  相似文献   

17.
The Devonian Antrim Shale is an organic‐rich, naturally fractured black shale in the Michigan Basin that serves as both a source and reservoir for natural gas. A well‐developed network of major, through‐going vertical fractures controls reservoir‐scale permeability in the Antrim Shale. Many fractures are open, but some are partially sealed by calcite cements that retain isotopic evidence of widespread microbial methanogenesis. Fracture filling calcite displays an unusually broad spectrum of δ13C values (+34 to ?41‰ PDB), suggesting that both aerobic and anaerobic bacterial processes were active in the reservoir. Calcites with high δ13C values (>+15‰) record cementation of fractures from dissolved inorganic carbon (DIC) generated during bacterial methanogenesis. Calcites with low δ13C values (13C values between ?10 and ?30‰ can be attributed to variable organic matter oxidation pathways, methane oxidation, and carbonate rock buffering. Identification of 13C‐rich calcite provides unambiguous evidence of biogenic methane generation and may be used to identify gas deposits in other sedimentary basins. It is likely that repeated glacial advances and retreats exposed the Antrim Shale at the basin margin, enhanced meteoric recharge into the shallow part of the fractured reservoir, and initiated multiple episodes of bacterial methanogenesis and methanotrophic activity that were recorded in fracture‐fill cements. The δ18O values in both formation waters and calcite cements increase with depth in the basin (?12 to ?4‰ SMOW, and +21 to +27‰ PDB, respectively). Most fracture‐fill cements from outcrop samples have δ13C values between ?41 and ?15‰ PDB. In contrast, most cement in cores have δ13C values between +15 and +34‰ PDB. Radiocarbon and 230Th dating of fracture‐fill calcite indicates that the calcite formed between 33 and 390 ka, well within the Pleistocene Epoch.  相似文献   

18.
It has been repeatedly shown that palaeoecological inferences from the elemental and isotopic content of carbonate hydroxylapatite of fossil teeth and bones are unrecoverable without removing diagenetic overprinting by chemical pretreatments. Such pretreatments may in turn cause modification of the biogenic signature. In this paper, we focus upon optimal removal of Ca–bearing carbonates (mainly calcite). In order to control the progress with time of calcite dissolution, we perform leaching under vacuum, and we monitor the evolution of the pH, pCO2, δ13C of released CO2, %C, δ13C and δ18O of the remaining mineral. For a set of different Quaternary bones and teeth, mass and isotopic balances indicate that 1 hour at most is necessary for complete dissolution of calcite with an optimal conservation of carbonate hydroxylapatite. Long–lasting experiments lead to a fractionation of hydroxylapatite 18O/16O carbonates.  相似文献   

19.
Samples from the Amposta Marino C2 well (Amposta oil field) have been investigated in order to understand the origin of fractures and porosity and to reconstruct the fluid flow history of the basin prior, during and after oil migration. Three main types of fracture systems and four types of calcite cements have been identified. Fracture types A and B are totally filled by calcite cement 1 (CC1) and 2 (CC2), respectively; fracture type A corresponds to pre‐Alpine structures, while type B is attributed to fractures developed during the Alpine compression (late Eocene‐early Oligocene). The oxygen, carbon and strontium isotope compositions of CC2 are close to those of the host‐rock, suggesting a high degree of fluid‐rock interaction, and therefore a relatively closed palaeohydrogeological system. Fracture type C, developed during the Neogene extension and enlarged by subaerial exposure, tend to be filled with reddish (CS3r) and greenish (CS3g) microspar calcite sediment and blocky calcite cement type 4 (CC4), and postdated by kaolinite, pyrite, barite and oil. The CS3 generation records lower oxygen and carbon isotopic compositions and higher 87Sr/86Sr ratios than the host‐limestones. These CS3 karstic infillings recrystallized early within evolved‐meteoric waters having very little interaction with the host‐rock. Blocky calcite cement type 4 (CC4 generation) has the lowest oxygen isotope ratio and the most radiogenic 87Sr/86Sr values, indicating low fluid‐rock interaction. The increasingly open palaeohydrogeological system was dominated by migration of hot brines with elevated oxygen isotope ratios into the buried karstic system. The main oil emplacement in the Amposta reservoir occurred after the CC4 event, closely related to the Neogene extensional fractures. Corrosion of CC4 (blocky calcite cement type 4) occurred prior to (or during) petroleum charge, possibly related to kaolinite precipitation from relatively acidic fluids. Barite and pyrite precipitation occurred after this corrosion. The sulphur source associated with the late precipitation of pyrite was likely related to isotopically light sulphur expelled, e.g. as sulphide, from the petroleum source rock (Ascla Fm). Geofluids (2010) 10 , 314–333  相似文献   

20.
The ability to make rapid measurements on small samples using laser fluorination enhances the potential of oxygen isotopes in the investigation of early inorganic materials and technologies. δ18O and 87Sr/86Sr values are presented for glass from two primary production sites, four secondary production sites and a consumer site in the Near East, dating from Late Antiquity to the medieval period. δ18O is in general slightly less effective than 87Sr/86Sr in discriminating between sources, as the spread of measured values from a single source is somewhat broader relative to the available range. However, while 87Sr/86Sr is derived predominantly from either the lime‐bearing fraction of the glass‐making sand or the plant ash used as a source of alkali, δ18O derives mainly from the silica. Thus the two measurements can provide complementary information. A comparison of δ18O for late Roman – Islamic glasses made on the coast of Syria–Palestine with those of previously analysed glasses from Roman Europe suggests that the European glasses are relatively enriched in 18O. This appears to contradict the view that most Roman glass was made using Levantine sand and possible interpretations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号