首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
El Chichón is an active volcano located in the north‐western Chiapas, southern Mexico. The crater hosts a lake, a spring, named Soap Pool, emerging from the underlying volcanic aquifer and several mud pools/hot springs on the internal flanks of the crater which strongly interact with the current fumarolic system (steam‐heated pools). Some of these pools, the crater lake and a cold spring emerging from the 1982 pumice deposits, have been sampled and analysed. Water–volcanic gas interactions determine the heating (43–99°C) and acidification (pH 2–4) of the springs, mainly by H2S oxidation. Significantly, in the study area, a significant NH3 partial pressure has been also detected. Such a geochemically aggressive environment enhances alteration of the rock in situ and strongly increases the mineralization of the waters (and therefore their electrical conductivity). Two different mineralization systems were detected for the crater waters: the soap pool‐lake (Na+/Cl? = 0.4, Na/Mg>10) and the crater mud pools (Na+/Cl? > 10, Na/Mg < 4). A deep boiling, Na+‐K+‐Cl?‐rich water reservoir generally influences the Soap Pool‐lake, while the mud pool is mainly dominated by water‐gas–rock interactions. In the latter case, conductivity of sampled water is directly proportional to the presence of reactive gases in solution. Therefore, chemical evolution proceeds through neutralization due to both rock alteration and bacterial oxidation of ammonium to nitrate. The chemical compositions show that El Chichón aqueous fluids, within the crater, interact with gases fed by a geothermal reservoir, without clear additions of deep magmatic fluids. This new geochemical dataset, together with previously published data, can be used as a base line with which to follow‐up the activity of this deadly volcano.  相似文献   

2.
The reliable identification of fakes consisting of bronze often presents problems, because traditional methods such as stylistic studies, optical microscopy, chemical analysis or X‐ray diffraction of the corrosion may not be conclusive. We present a method that is based on the comparison of the tin isotope ratios 122Sn/116Sn and 117Sn/119Sn in the metal and in the adherent corrosion layer. An artificial patina is usually generated within a short time period. It has been observed that such a procedure leads to a depletion of the light tin isotopes in the corrosion layer, while in naturally corroded authentic archaeological objects no isotopic fractionation has been detected. The method has also been applied to archaeological objects and it could be confirmed, among other examples, that the famous ‘Sky Disc of Nebra’ is authentic.  相似文献   

3.
Calcite veins in Paleoproterozoic granitoids on the Baltic Shield are the focus of this study. These veins are distinguished by their monomineralic character, unusual thickness and closeness to Neoproterozoic dolerite dykes and therefore have drawn attention. The aim of this study was to define the source of these veins and to unravel their isotopic and chemical nature by carrying out fine‐scale studies. Seven calcite veins covering a depth interval of 50–420 m below the ground surface and composed of breccias or crack‐sealed fillings typically expressing syntaxial growth were sampled and analysed for a variety of physicochemical variables: homogenization temperature (Th) and salinity of fluid inclusions, and stable isotopes (87Sr/86Sr, 13C/12C, 18O/16O), trace‐element concentrations (Fe, Mn, Mg, Sr, rare earth elements) and cathodoluminescence (CL) of the solid phase. The fluid‐inclusion data show that the calcites were precipitated mainly from relatively low‐temperature (Th = 73–106°C) brines (13.4–24.5 wt.% CaCl2), and the 87Sr/86Sr is more radiogenic than expected for Rb‐poor minerals precipitated from Neoproterozoic fluids. These features, together with the distribution of δ13C and δ18O values, provide evidence that the calcite veins are not genetic with the nearby Neoproterozoic dolerite dykes, but are of Paleozoic age and were precipitated from warm brines expressing a rather large variability in salinity. Whereas the isotopic and chemical variables express rather constant average values among the individual veins, they vary considerably on fine‐scale across individual veins. This has implications for understanding processes causing calcite‐rich veins to form and capture trace metals in crystalline bedrock settings.  相似文献   

4.
Book Reviews     
Abstract

Naturally occurring plant and animal pigments have long aroused intense scientific interest. The vivid red organic pigments, the petroporphyrins, present as minor components of many sediments and petroleums, are now receiving increasing attention in the field of organic geochemistry. First observed 50 years ago, and thought to arise in part from the green photosynthetic pigment chlorophyll in ancient organisms, they provided the first firm evidence for a biogenic origin for petroleum. Recent improvements in microanalytical chemical techniques have shown that the petro porphyrins are generally complex mixtures of a variety of closely related structural types. The distributions of the components as revealed by direct insertion probe mass spectrometry (MS), high-performance liquid chromatography (HPLC) and computerised gas chromatography-mass spectrometry (CGCMS) can provide a record of the original depositional palaeoenvironment and subsequent thermal history of the sedimentary matrix. The petroporphyrins are finding increasing application as a maturity parameter in petroleum geochemistry, complementing information from other biological marker components, and, in conjunction with geological and geophysical measurements, they can help to enhance the efficiency of exploration programmes.  相似文献   

5.
We used seismic velocity as a proxy for serpentinization of the mantle, which occurred beneath thinned but laterally continuous continental crust during continental break up, prior to opening of the Atlantic Ocean. The serpentinized sub‐continental mantle is now exhumed, beneath the Iberia Abyssal Plain and was accessed by scientific drilling on Ocean Drilling Program legs 149 and 173. Chromatographic modelling of kinetically limited transport of the serpentinization front yields a front displacement of 2197 ± 89 m, a time‐integrated fluid flux of 1098 ± 45 m3 m?2 and a Damköhler number of 6.0 ± 0.2. Whether either surface reaction or chemical transport limit the rate of reaction, we calculate timescales for serpentinization of approximately 105–106 years. This yields time‐average fluid flux rates for H2O, entering and reacting with the mantle, of 60–600 mol m?2 a?1 and for CH4, produced as a by‐product of oxidation of Fe++ to magnetite and exiting the mantle, of 0.55–5.5 mol m?2 a?1. This equates to a CH4‐flux of 0.18–1.8 Tg a?1 for coeval serpentinization of the mantle that was exhumed west of Iberia. This represents 0.03–0.3% of the present‐day annual CH4‐flux from all sources and a higher fraction of pre‐anthropogenic (lower) CH4 levels. CH4 released by serpentinization at or beneath the seafloor could provide substrate for biological chemosynthesis and/or promote gas‐hydrate formation. Finally, noting its volumetric extent and rapidity (<106 years), we interpret serpentinization to be a reckonable component of tectonic processes, contributing both diapiric and expansional forces and helping to ‘lubricate’ extensional processes. Given its anisotropic permeability, actively deforming serpentinite might impede melt migration which may be of interest, given the apparent lack of melt in some rifted margins.  相似文献   

6.
Ion beam induced luminescence (IBIL) was applied, along with cathodoluminescence (CL), on seven samples of marbles of historic and architectural interest. The CL colours, observed in a cold cathode device, have been related to the IBIL spectra. Moreover, a detailed analysis of the IBIL spectral features has made it possible to disclose the influence of the chemical composition and to emphasize the crystal‐chemical role of the Mn2+. Beyond the chemical information and the crystal‐chemical interpretation, the spectra are recognized as being valuable in the field of archaeological studies for their significance as fingerprints of marbles, giving information on their nature and origin.  相似文献   

7.
The boron stable isotope ratio δ11B of 12 water samples representative of three chemical facies (fresh Na‐bicarbonate, brackish Na‐chloride, saline, and brine Ca‐chloride) has been analyzed. Interpretation of the δ11B data, along with the chemical compositions, reveals that Na‐carbonate waters from the Northern Apennine are of meteoric origin, with boron contributions from clay desorption and mixing with seawater‐derived fluids of Na‐chloride or Ca‐chloride compositions. The comparison of our new results with the literature data on other sedimentary basins of Mediterranean, and worldwide, confirms the contribution of Na‐bicarbonate waters to the genesis of mud volcano fluids. The Na‐chloride sample of Salvarola (SAL), which may represent the end‐member of the mud volcanoes, and the Ca‐chloride brine water from Salsomaggiore (SM) indicate boron release from clays compatible with the diagenetic process. The empirical equation: relating boron concentration and the stable isotope composition of the fluids observed in this study and the literature is proposed to trace the effect of diagenesis in sedimentary basins. A geothermometer associated to the diagenetic equation is also proposed: The application of this equation to obtain reservoir temperatures from δ11B compositions of waters should be carefully evaluated against the results obtained from other chemical and isotopic geothermometers from other basins around the world.  相似文献   

8.
This paper is concerned with the morphological evolution of three‐dimensional chemical dissolution fronts that occur in fluid‐saturated porous media. A fully coupled system between porosity, pore‐fluid flow and reactive chemical species transport is considered to describe this phenomenon. Using the newly presented concept of the generalized dimensionless pore fluid pressure‐gradient, which can be used to represent the interaction between solute advection, solute diffusion, chemical kinetics and the shape factor of the soluble mineral, a theoretical criterion has been established to assess the likelihood of instability at a chemical dissolution front in the reactive transport system. To simulate the chemical dissolution front evolution in a three‐dimensional fluid‐saturated porous medium, a numerical procedure combining both the finite difference method and the finite element method has been proposed. As the problem belongs to a complex system science problem, a small randomly generated perturbation of porosity is added to the initial porosity of a three‐dimensional homogeneous domain to trigger instability of a planar chemical dissolution front during its propagation within the fluid‐saturated porous medium. To test the correctness and accuracy of the proposed numerical procedure, a three‐dimensional benchmark problem has been constructed and the related analytical solution has been derived. This enables using the proposed numerical procedure for simulating the morphological evolution of a three‐dimensional chemical dissolution front from a stable, planar state into an unstable, fingering state. The related numerical results demonstrate that the proposed numerical procedure is useful for, and capable of, simulating the morphological instability of a three‐dimensional chemical dissolution front within a fluid‐saturated porous medium.  相似文献   

9.
Lead isotope analysis has been applied to the investigation of some Roman objects found in the town of Pompeii, consisting mostly of fistulae from the Augustan water supply system. The results of the analyses have produced ratios between 18.10 and 18.66 for 206Pb/204Pb, between 15.63 and 15.72 for 207Pb/204Pb and between 38.21 and 38.98 for 208Pb/204Pb. These data point to a fairly complex origin for the lead artefacts, probably involving several successive meltings and recyclings of a rather heterogeneous lead supply. The spread of lead isotope ratios can only be reconciled with a multiplicity of end‐members, at least three, but very probably more. There is one certain Sardinian ore, other indistinguishable Hercynian ores of Sardinia and/or Spain, and several different Alpine Mesozoic‐Tertiary mineralizations of the Mediterranean basin (Spain, Greece, Tuscany).  相似文献   

10.
Sea otters have barely survived centuries of colonial and capitalist development. To understand why, I examine how they have been oriented in capitalist social relations in Alaska, and with what effects. I follow sea otters through three overlapping political economic episodes, each of which shapes the next: colonial expansion and the fur trade; petro‐capitalism and the negligent neoliberal state, culminating in the 1989 Exxon Valdez oil spill; and finally, spill cleanup and “green” capitalism, when sea otters are produced as data points and spectacle. In each episode, I describe (1) sea otters’ orientation in relation to capitalism and the state, and (2) the nature and temporality of violence and ecological loss that attends their orientation. In conversation with theorisations of extinction as a “slow unravelling”, I suggest animal life can unravel less slowly than haltingly—quick, quick, slow—and that the unravelling and animals’ orientation in capitalism are co‐constituted.  相似文献   

11.
This article analyses the nature of the current Russian system and its future trajectory. First, the continuity between the Yeltsin and Putin presidencies is made clear. The nature of the Russian system has, to a great extent, been influenced by Yeltsin, who strengthened demands not for independent institutions but for a new and more powerful authoritarian leadership. Putin has consolidated the system, based on personalized power. But despite signs of economic growth and outward stability there is evidence that the Russian system is unsustainable in the long‐term. The current system is based on a modification of the petro‐economy that reproduces the merger between power and business with the rentier class. Thus far, however, the model has not been able to solve social conflicts or stop the degradation of ‘human capital’. Nor is it likely to do so in the future.  相似文献   

12.
This article seeks to reconceptualize the post‐Washington consensus (PWC) by focusing not simply upon the institutional structures and ideology promoted by it, but the manner in which these are promoted on the ground. The aim is to reveal a central distinction between the Washington consensus and the PWC that has been somewhat neglected: their diverging approaches to implementation. The author focuses on the World Bank‐funded Kecamatan Development Program (KDP) in Indonesia, a project that is viewed by some as being somewhat unorthodox. He argues that in addition to its promotion of the latest round of institutional reforms, what is really different about KDP, compared with older approaches to market‐led development typical of the Washington consensus, is the manner in which it delivers its mix of neoliberalism. What is radical about a programme like KDP is that it constitutes a new Trojan horse for embedding market‐centred norms and practices.1 In general, this is demonstrative of a key difference between the Washington consensus and the PWC that has been undervalued in many analyses of the dominant development paradigm: the methods used to embed and sustain liberal markets.  相似文献   

13.
The paper deals with the major chemistry and stable isotopes (hydrogen, oxygen, carbon, sulfur, strontium) of waters and solutes from the Salar de Atacama basin (Rio Pedro, Honar Creek and Laguna Chaxa) and Andean Altiplano (Laguna Miñique and Laguna Miscanti). The water inflows of the Salar are chemically quite different, the Rio San Pedro being of Na‐Cl type and the Honar Creek of Na‐HCO3 type, in keeping with the sedimentary‐evaporitic and volcanic nature of the catchment rocks respectively. The δ34S and δ18O values of sulfate and the 87Sr/86Sr ratio of strontium in the streams match those of drained rocks, whereas the δ13C values of dissolved carbonate are largely controlled by vegetation. The lagoons are evaporated meteoric water bodies, and the relative air humidity estimated from the slope of the isotopic evaporation line is in accordance with historical data on air humidity in the area. The Laguna Chaxa is Na‐Cl rich, and its isotopic composition are consistent with a mixed sedimentary‐volcanic provenance of sulfur and strontium solutes. The Laguna Miñique is Na‐SO4 rich, and its sulfate δ34S is nearly identical to that of Laguna Chaxa. The δ13C(HCO3) values are quite different in the Laguna Chaxa and Laguna Miñique, with the former being notably enriched in 13C probably because of preferential uptake of 12C by the high biological productivity occurring in the lagoon. The limited set of new data is interpreted in the context of a much larger literature database. In particular, previous chemical data on inflows and brines in the Salar de Atacama were revisited, and compared with evaporation path models and mineral stability diagrams (boron, lithium and Mg‐minerals) computed using updated software and thermodynamic databases. The modeling shows that the removal of boron and lithium from sulfate‐rich brines possibly occurs, respectively, as ulexite and sulfate salts, and carnallite should be the final magnesium phase of the brine evolution.  相似文献   

14.
More than a dozen hydrocarbon seep‐carbonate occurrences in late Jurassic to late Cretaceous forearc and accretionary prism strata, western California, accumulated in turbidite/fault‐hosted or serpentine diapir‐related settings. Three sites, Paskenta, Cold Fork of Cottonwood Creek and Wilbur Springs, were analyzed for their petrographic, geochemical and palaeoecological attributes, and each showed a three‐stage development that recorded the evolution of fluids through reducing–oxidizing–reducing conditions. The first stage constituted diffusive, reduced fluid seepage (CH4, H2S) through seafloor sediments, as indicated by Fe‐rich detrital micrite, corroded surfaces encrusted with framboidal pyrite, anhedral yellow calcite and negative cement stable isotopic signatures (δ13C as low as ?35.5‰ PDB; δ18O as low as ?10.8‰ PDB). Mega‐invertebrates, adapted to reduced conditions and/or bacterial chemosymbiosis, colonized the sites during this earliest period of fluid seepage. A second, early stage of centralized venting at the seafloor followed, which was coincident with hydrocarbon migration, as evidenced by nonluminescent fibrous cements with δ13C values as low as ?43.7‰ PDB, elevated δ18O (up to +2.3‰ PDB), petroleum inclusions, marine borings and lack of pyrite. Throughout these early phases of hydrocarbon seepage, microbial sediments were preserved as layered and clotted, nondetrital micrites. A final late‐stage of development marked a return to reducing conditions during burial diagenesis, as implied by pore‐associated Mn‐rich cement phases with bright cathodoluminescent patterns, and negative δ18O signatures (as low as ?14‰ PDB). These recurring patterns among sites highlight similarities in the hydrogeological evolution of the Mesozoic convergent margin of California, which influenced local geochemical conditions and organism responses. A comparison of stable carbon and oxygen isotopic data for 33 globally distributed seep‐carbonates, ranging in age from Devonian to Recent, delineated three groupings that reflect variable fluid input, different tectono‐sedimentary regimes and time–temperature‐dependent burial diagenesis.  相似文献   

15.
Petrography, Eh‐pH calculations and the stable isotope composition of oxygen are used to interpret geochemical processes that occurred during iron oxide mineralization and dolomitization along the Menuha Ridge segment of the Paran Fault, southern Israel, adjacent to the Dead Sea Transform (DST). Iron mineralization is strongly localized in the fault zone as ferruginous lenses, whereas Fe dolomitization spreads laterally into the Cenomanian‐Turonian carbonate host rock as stratabound beds. The average oxygen isotope fractionation between syngenetic quartz and iron oxides in the ferruginous lenses gives a temperature of 50 ± 10°C and δ18O SMOW water = ?3.5‰; consistent with an origin from metalliferous groundwater flow in the sedimentary basin. Ferroan dolomite initially formed under strongly reducing conditions, but this was followed by oxidation and pseudomorphic replacement of the dolomite by a mesh of fine‐grained iron oxides (simple zoned dolomites). This cycle of ferroan dolomite formation and replacement by iron oxides was repeated in complex zoned dolomites. Dolomite oxygen isotope compositions fall into two groups: a high δ18O group corresponding to the simple zoned dolomites and non‐ferroan dolomites and a low δ18O group corresponding to the complex zoned dolomites. Water‐rock calculations suggest that the epignetic dolomites formed under fluid‐buffered conditions: the high δ18O group are indicated to have formed at temperatures of ca. 25°C for waters with δ18O = ?4 to 0‰; the low δ18O complex zoned dolomites at 50–75°C for waters with the same isotopic composition. A kinetic calculation for a complex zoned dolomite‐bearing bed indicates that dolomitization must have occurred at high values of the dolomite saturation index. This requirement for high Mg supersaturation and the indication that epigenetic dolomitization is more protracted in stratigraphically deeper formations located closer to the DST is consistent with models proposing that Mg‐rich solutions originated in the Dead Sea Rift.  相似文献   

16.
The measurement of sulphur isotope (δ34S) values in charred plant remains has the potential to inform understanding of the spatial configuration and ecology of crop production. We investigated the effects of charring, manuring, oxidation and anaerobic soil conditions on modern cereal grain/pulse seed δ34S values, and assessed the effect of chemical pre‐treatment on charred modern and archaeobotanical grain/seed δ34S values. We used these results to interpret δ34S values in archaeobotanical material from Neolithic Çatalhöyük. Our results suggest that δ34S values can be reliably preserved in charred grain/seeds but are subject to influence by anaerobic soil conditions, the effect depending on the timing of flooding in relation to S assimilation.  相似文献   

17.
The Dongsheng uranium deposit, the largest in situ leach uranium mine in the Ordos Basin, geometrically forms a roll‐front type deposit that is hosted in the Middle Jurassic Zhiluo Formation. The genesis of the mineralization, however, has long been a topic of great debate. Regional faults, epigenetic alterations in surface outcrops, natural oil seeps, and experimental findings support a reducing microenvironment during ore genesis. The bulk of the mineralization is coffinite. Based on thin‐section petrography, some of the coffinite is intimately intergrown with authigenic pyrite (ore‐stage pyrite) and is commonly juxtaposed with some late diagenetic sparry calcite (ore‐stage calcite) in primary pores, suggesting simultaneous precipitation. Measured homogenization temperatures of greater than 100°C from fluid inclusions indicate circulation of low‐temperature hydrothermal fluids in the ore zone. The carbon isotopic compositions of late calcite cement (δ13CVPDB = ?31.0 to ?1.4‰) suggest that they were partly derived from sedimentary organic carbon, possibly from deep‐seated petroleum fluids emanating from nearby faults. Hydrogen and oxygen isotope data from kaolinite cement (δD = ?133 to ?116‰ and δ18OSMOW = 12.6–13.8‰) indicate that the mineralizing fluids differed from magmatic and metamorphic fluids and were more depleted in D (2H) than modern regional meteoric waters. Such a strongly negative hydrogen isotopic signature suggests that there has been selective modification of δD by CH4±H2S±H2 fluids. Ore‐stage pyrite lies within a very wide range of δ34S (?39.2 to 26.9‰), suggesting that the pyrite has a complex origin and that bacterially mediated sulfate reduction cannot be precluded. Hydrocarbon migration and its role in uranium reduction and precipitation have here been unequivocally defined. Thus, a unifying model for uranium mineralization can be established: Early coupled bacterial uranium mineralization and hydrocarbon oxidation were followed by later recrystallization of ore phases in association with low‐temperature hydrothermal solutions under hydrocarbon‐induced reducing conditions.  相似文献   

18.
Understanding hydrothermal processes during production is critical to optimal geothermal reservoir management and sustainable utilization. This study addresses the hydrothermal (HT) processes in a geothermal research doublet consisting of the injection well E GrSk3/90 and production well Gt GrSk4/05 at the deep geothermal reservoir of Groß Schönebeck (north of Berlin, Germany) during geothermal power production. The reservoir is located between ?4050 to ?4250 m depth in the Lower Permian of the Northeast German Basin. Operational activities such as hydraulic stimulation, production (T = 150°C; Q = ?75 m3 h?1; C = 265 g l?1) and injection (T = 70°C; Q = 75 m3 h?1; C = 265 g l?1) change the HT conditions of the geothermal reservoir. The most significant changes affect temperature, mass concentration and pore pressure. These changes influence fluid density and viscosity as well as rock properties such as porosity, permeability, thermal conductivity and heat capacity. In addition, the geometry and hydraulic properties of hydraulically induced fractures vary during the lifetime of the reservoir. A three‐dimensional reservoir model was developed based on a structural geological model to simulate and understand the complex interaction of such processes. This model includes a full HT coupling of various petrophysical parameters. Specifically, temperature‐dependent thermal conductivity and heat capacity as well as the pressure‐, temperature‐ and mass concentration‐dependent fluid density and viscosity are considered. These parameters were determined by laboratory and field experiments. The effective pressure dependence of matrix permeability is less than 2.3% at our reservoir conditions and therefore can be neglected. The results of a three‐dimensional thermohaline finite‐element simulation of the life cycle performance of this geothermal well doublet indicate the beginning of thermal breakthrough after 3.6 years of utilization. This result is crucial for optimizing reservoir management. Geofluids (2010) 10 , 406–421  相似文献   

19.
The Palmottu hydrosystem is located in a granitic host rock in southern Finland. Along well‐defined pathways in the fractured crystalline rock, strontium isotopes are used to trace the degree of water–rock interaction (WRI) and mixing processes in groundwaters. The 87Sr/86Sr ratios range between 0.716910 and 0.735606 in the surface waters and between 0.719991 and 0.750787 in the groundwaters, but are between 0.720 and 0.735 in most of the samples. Moreover, the results show a lack of correlation between the water chemistries determining the classification into different water‐types (Na–Cl, Na–SO4, etc.) and the results of the strontium (Sr) contents and Sr isotopic ratios. From a WRI standpoint, this implies that the Sr behaviour is independent of the water chemistry; the occurrence of large 87Sr/86Sr variations is site specific and mainly dependent on the lithology. A model to determine the 87Sr/86Sr ratio of water after interaction with granite was developed. This model is based on the assumption that Sr was derived from three minerals: plagioclase, K‐feldspar and biotite. The results of the calculation indicate that around half of the water analysed within the Palmottu hydrosystem can be explained by the weathering of the granites. However, clearly lower 87Sr/86Sr are observed in waters when compared to the calculated 87Sr/86Sr and other sources of Sr, with low 87Sr/86Sr, rather than the calculated granite–water interaction, which may be suspected. When comparing the 87Sr/86Sr and ion ratios (Ca/Na, Mg/Na, Sr/Na, Cl/Na), the scattering of the data can be explained by the presence of four end‐members: a brine component (low 87Sr/86Sr and Ca/Na ratios…), a deep granitic component (high 87Sr/86Sr ratios and low Ca/Na ratios…), a subsurface component (intermediate 87Sr/86Sr ratios associated with high Ca/Na ratios…) and a surface end‐member:snow and river drainage (low 87Sr/86Sr and low Ca/Na ratios…). These extreme end‐members define a series of WRI‐mixing line within a rather complex hydrosystem.  相似文献   

20.
Most researchers in the Proterozoic eastern Mt Isa Block, NW Queensland, Australia, favour magmatic fluid and salt sources for sodic‐(calcic) alteration and iron oxide–copper–gold mineralization. Here we compare spatial, mineralogic and stable isotope data from regional alteration assemblages with magmatic and magmatic‐hydrothermal interface rocks in order to track chemical and isotopic variations in fluid composition away from inferred fluid sources. Tightly clustered δ18O values for magnetite, quartz, feldspar and actinolite for igneous‐hosted samples reflect high temperature equilibration in the magmatic‐hydrothermal environment. In contrast, these minerals record predominantly higher δ18O values in regional alteration and Cu–Au mineralization. This dichotomy reflects partial equilibration with isotopically heavier wallrocks and slightly lower temperatures. Increases in Si concentrations of metasomatic amphiboles relative to igneous amphiboles in part reflect cooling of metasomatic fluids away from igneous rocks. Variations in XMg for metasomatic amphiboles indicate local wallrock controls on amphibole chemistry, while variations in XCl/XOH ratios for amphiboles (at constant XMg) indicate variable aH2O/aHCl ratios for metasomatic fluids. Biotite geochemistry also reflects cooling and both increases and decreases in aH2O/aHCl for fluids away from plutonic rocks. Decreased aH2O/aHCl ratios for metasomatic fluids reflect in part scavenging of chlorine out of meta‐evaporite sequences, although this process requires already saline fluids. Local increases in aH2O/aHCl ratios, as well as local decreases in δ18O values for some minerals (most notably haematite and epithermal‐textured quartz), may indicate ingress of low salinity, low δ18O fluids of possible meteoric origin late in the hydrothermal history of the region. Taken together, our observations are most consistent with predominantly magmatic sources for metasomatic fluids in the eastern Mt Isa Block, but record chemical and isotopic variations along fluid flow paths that may be important in explaining some of the diversity in alteration and mineralization styles in the district.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号