首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Roman and Byzantine times, natron glass was traded throughout the known world in the form of chunks. Production centers of such raw glass, active from the 4th to 8th century AD, were identified in Egypt and Syro-Palestine. However, early Roman primary glass units remain unknown from excavation or scientific analysis. The ancient author Pliny described in 70 AD that besides Egyptian and Levantine resources, also raw materials from Italy and the Gallic and Spanish provinces were used in glass making. In this study, the primary provenance of 1st–3rd century AD natron vessel glass is investigated. The use of combined Sr and Nd isotopic analysis allows the distinguishing and characterizing of different sand raw materials used for primary glass production. The isotope data obtained from the glass samples are compared to the signatures of primary glass from known production centers in the eastern Mediterranean and a number of sand samples from the regions described by Pliny the Elder as possible sources of primary glass. Eastern Mediterranean primary glass has a Nile dominated Mediterranean Nd signature (higher than −6.0 ? Nd), while glass with a primary production location in the western Mediterranean or north-western Europe should have a different Nd signature (lower than −7.0 ? Nd). Most Roman glass has a homogeneous 87Sr/86Sr signature close to the modern sea water composition, likely caused by the (intentional) use of shell as glass raw material. In this way, strontium and neodymium isotopes now prove that Pliny's writings were correct: primary glass production was not exclusive to the Levant or Egypt in early Roman days, and factories of raw glass in the Western Roman Empire will have been at play.  相似文献   

2.
One hundred and twenty-eight colourless glass tablewares from settlement contexts throughout the British Isles, dating from the mid-3rd to 4th century AD, were analysed by ICP-AES spectrometry. Three distinct compositional groups were identified based upon the use of different decolourisers and primary raw materials, with possible sub-groups within these. These compositions have distinct, but overlapping chronological ranges, suggesting colourless glass production in at least three, possibly more, centres in the late Roman period. The compositional analysis highlights the high degree to which recycling of glass was taking place during this late period. The chronological distribution of some of these compositions is more restricted within the British assemblages than is observed in other published assemblages from Western Europe. This distinction may indicate different supply patterns of glass to the Western provinces.  相似文献   

3.
Archaeological, historical and analytical evidence can identify trade patterns and the movement of people and products and thus reveal the cultural and economic connections that existed at a given time. In the case of first millennium CE glass, the manufacture of raw glass in a limited number of glass making installations with unique compositional characteristics makes it possible to trace the likely origin of the raw materials at consumption sites. In this way the analytical characterisation of a large corpus of glass finds can identify changes in the supply routes of high-end industrial products from the Roman to the middle Byzantine period.  相似文献   

4.
Analysis has been conducted on 19 blue glasses from Amarna in Middle Egypt dated to around 1350 BC. The results suggest that these glasses fall into two distinct types: cobalt coloured glasses with a natron based alkali made from local Egyptian materials, and copper coloured glasses with a plant ash alkali, which follow a Mesopotamian tradition of glass making. It is suggested that at least some of this copper/plant ash glass is imported into Egypt during the Amarna period despite extensive local production of cobalt/natron glass. Existing analyses (Lilyquist and Brill 1995) of the earliest glass from the reign of Tuthmosis III (c. 1450 BC) suggest that during this period the same two types of glass are present. Local Egyptian cobalt and natron in these early glasses implies that, despite the lack of archaeological evidence for production sites, glass was produced from its raw materials in Egypt as early as the reign of Tuthmosis III.  相似文献   

5.
Vitreous tesserae from two mosaics in Herculaneum (Italy) dating from the 1st century AD have been investigated in order to gather information on Imperial Age opaque glass. The combined use of complementary micro-destructive analytical techniques, namely optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), inductively coupled plasma-mass spectrometry (ICP-MS), transmission electron microscopy (TEM), and X-ray powder diffraction (XRPD) allowed to define the nature of formers, fluxes, chromophores and opacifying compounds and to determine the type of raw materials employed for their introduction. The results confirmed the high technological level of Imperial Age glassmakers and clarified some details of the production processes. Experimental data have been obtained concerning formation of antimony-based opacifiers. The presence of tin-containing Ca- and Pb-antimonates has been ascertained in various green, yellow and turquoise tesserae. Moreover, unusual divergences from the established Roman age ‘low magnesia–low potash’ (LMLK) glass composition have been found for some red and green samples.  相似文献   

6.
In the present study, the first archaeometric data on an ample selection of intentionally coloured (or decoloured) Early Roman glass (1st–2nd centuries AD) from the Archaeological Museum of Adria (Rovigo, Italy) are reported. The analysed samples are 61 in total, both transparent and opaque, and were characterised from the textural (SEM-EDS), mineralogical (XRPD) and chemical (XRF, EPMA, LA-ICP-MS) points of view. This combined approach allowed us to identify the raw materials and production technologies employed in the manufacture of glassware. Results for the transparent samples show that they are all silica-soda-lime glasses. Most of them, independently of colour, have compositions close to those of typical Roman glass, produced with natron as flux. No relationships were identified among chemical compositions, types or production techniques, but a dependence on bulk composition was identified for some particular colours, revealing the careful and intentional selection of raw materials. This is the case of Sb-colourless glass, produced with sand of high purity, a group of intensely coloured objects, mainly emerald green and black, produced with soda ash as flux, and some blue examples produced with various sources of sand or soda ash as flux. Two main types of opacifiers were identified for the opaque samples: calcium antimonate for white, mauve and blue glasses, and lead antimonate for the yellow ones; in one case, a yellow lead-tin antimonate was also identified. As regards the opaque glasses, most of the samples opacified with calcium antimonate are silica-soda-lime in composition, similar to the typical Roman glass. Instead, samples opacified with lead and/or lead-tin antimonates are lead glasses, suggesting different production technologies.  相似文献   

7.
Lisht is one of a few New Kingdom sites with known glass‐working debris. Here, we present evidence for the primary production of glass at Lisht, including crucible fragments and semi‐finished glass. We also provide 12 new chemical analyses of glass from Lisht, including trace elements. We argue that the glass made at Lisht has a specific chemical signature within the broader range of Late Bronze Age glass compositions from Egypt, further underlining the former existence of primary glass production there and offering the possibility of identifying Lisht‐made glass elsewhere in Egypt and beyond.  相似文献   

8.
C. M. JACKSON 《Archaeometry》2005,47(4):763-780
This paper discusses the compositional analysis of Roman colourless glass from three sites in Britain. The findings suggest that two broad compositional groups can be identified on the basis of the choice of the initial raw materials selected for glass production, in particular the sand. The largest of these groups is inherently different from the naturally coloured, blue–green glasses of the same period, while the other group is compositionally similar. Further subgroups are apparent on the basis of the decolorizers used. These glass groups are explored in the light of the current theories concerning the organization of glass production in the Roman world.  相似文献   

9.
The trace element boron is present in most ancient glasses as an impurity, and high boron (≥ 300 ppm) marks raw material sources that are geologically specific and relatively uncommon. Recent analyses of Byzantine glass with high boron contents suggest that glass‐making was not limited to the traditional regions of the Levant and Egypt, and a production origin in or near western Anatolia is proposed. Glass bracelets from ?i?n al‐Tīnāt in southern Turkey give fresh evidence for the production and circulation of high‐boron glasses that closely correlates with object typology. The patterning of findspots suggests that high‐boron glass was closely connected to the Byzantine world.  相似文献   

10.
The Raya port (eighth to 12th centuries) on the Sinai Peninsula, Egypt, was one of the important port cities for the Red Sea trade. We performed on-site analyses of Islamic glass vessels (used in eighth to 11th centuries) mainly from this site in Egypt using a portable XRF spectrometer. The aim of this paper is to contribute to our understanding of the chemical compositions of early Islamic glass vessels by comparing their archaeological date and typology. In the early Islamic period, glass objects were mainly produced from natron as the soda source. Among the natron glass analyzed in this study, glass vessels with low titanium and iron and high strontium contents, which were probably produced in the Syria–Palestine region, were excavated in the eighth century layer. From the ninth century layer, a large number of samples with high levels of calcium, titanium and iron, probably produced in Egypt, were found. It should be noted that a large number of glass vessels with this chemical composition were found at the Raya site, because this type of glass was rarely reported from other Islamic sites. We finally concluded that this type of glass seems to be produced under a fixed recipe, although some samples contain a colorant or decolorized materials.  相似文献   

11.
This study focuses on the chemical composition of Islamic plant-ash glass (dated from the 9th to 11th centuries) excavated from the Raya/al-Tur area on the South Sinai in Egypt. Plant-ash glass objects from the Raya site were classified into three compositional types based on on-site chemical analyses with a portable X-ray fluorescence spectrometer. Based on typological characteristics and chemical composition comparisons with contemporary glass objects from other Islamic sites, one hypothesis holds that plant-ash glass objects produced in the Syria–Palestine or Mesopotamian regions could have been imported to Raya during the 9th to 10th centuries. In particular, some colorless glass vessels with a high magnesium/calcium ratio were noted to exhibit post-Sassanian cut decorations. Conversely, most of the bluish-green plant-ash glass objects from the Monastery of Wadi al-Tur near the Raya site exhibited relatively high levels of aluminum, titanium, iron, and lead. These pieces were likely produced during the Fatimid period (late 10th to 12th centuries), and based on their elemental composition, possibly originated in Egypt. The present work provides a greater understanding of chronological changes in post-9th century Islamic plant-ash glasses and the development of social and commercial networks within the Middle Eastern area.  相似文献   

12.
The finding of glass chunks together with fuel ash slag and kiln fragments related to glass processing strongly suggests local secondary production (working) of glass at Sagalassos (SW Turkey) from imperial to early Byzantine times. Chemical evidence shows that different silica raw materials were used in imperial and early Byzantine times for blue and green glass found locally. Colourless glass shows no clear difference in chemical composition and hence in silica raw materials between late Roman and early Byzantine times. Locally found early Byzantine yellow-green glass and chunks correspond to the previously defined Byzantine HIMT glass type. The chemical composition of the glass chunks found, identical to that of the contemporary glass of the same colour, strongly indicates that these chunks were used for the manufacture of early Byzantine green, colourless and yellow-green glass at Sagalassos.The homogenous lead isotopic composition of the chronological groups of blue glass, suggests the use of two distinct but homogenous silica raw materials for the manufacture of this glass. In view of this homogeneity, it is likely that contemporary blue glass was produced at a single location. The linear trend of the heterogeneous lead isotopic composition of the green and colourless glass is a strong indication of recycling effects in the glass composition. The end members of this trend are formed by the isotopic composition of the blue glass on the one hand, and of the yellow-green (HIMT) glass on the other hand. The heterogeneous lead isotopic composition of the yellow-green glass at Sagalassos is probably the result of recycling of this glass, reflecting mixtures of the original lead isotopic signatures of the broken glass and the original HIMT glass chunks.It should be noted that the two main raw materials for primary glass production (silica and soda) were available on the territory of Sagalassos. Moreover, the lead isotopic composition of quartz pebbles sampled from the artisanal quarter of Sagalassos, is similar to that of the local blue glass.  相似文献   

13.
Research on the cargo of glass in the Roman ship Iulia Felix, wrecked off the town of Grado (province of Udine, North Italy) in the first half of the 3rd century AD and composed of recycling cullet carefully selected for colour and type, provided much information on Roman glass production technology. A combined approach, involving analytical, statistical, and archaeological evidence, included chemical analyses (X-ray fluorescence, electron microprobe), which indicated that the coloured samples were all soda-lime-silica in composition, with natron as flux, although cluster analysis identified many compositional groups. Comparisons among the compositional groups of the colourless glass, previously studied, and those of coloured glass showed that the production technologies of the colourless glass vessels constitute two well-defined technological end-members, also related to group types, into which those of the coloured glass samples fall. In particular, coloured glass samples—all bottles, low-status vessels—were produced with mainly beach siliceous-feldspar-calcareous sand. However, unlike the colourless type, strict control of raw materials and decolourising processes was not adopted, and recycling was also practised, as demonstrated by the Sb2O3, Cu and Pb patterns. In this context, a “recycling index” (RI)—[(Sb2O3)X/(Sb2O3)Ref] * 100—is proposed here for the first time, in order to quantify the extent of recycling of antimony colourless glass in the batch. RI is valid for glass containing abundant Sb from an end-member of colourless glass. In conclusion, although it cannot be stated unequivocally that the identified compositional trends are related to different production centres or different raw materials, the strong evidence of compositional variability among all the Iulia Felix glass samples, both colourless and coloured, supports the dispersed production model for Roman glassware and the common practice of recycling in Roman imperial times, especially for low-status vessels.  相似文献   

14.
Little is known about the origin, supply pattern and production technology of Byzantine glass mosaic tesserae. In this study, we have analysed forty-eight glass tesserae from Sagalassos (Asia Minor) of different colours and from two archaeological contexts that were stratigraphically dated to the sixth century CE. The main aim was to identify the raw materials, colourants and opacifiers as well as secondary working practices that are reflected in the composition (EPMA, LA-ICP-MS analyses) and the microstructure (XRD, SEM-BSE) of the tesserae. The set of samples retrieved from the Roman Baths complex at Sagalassos is compositionally very homogeneous, representing possibly a single commission, and can be tentatively dated to the late Roman period. In contrast, the assemblage associated with the construction of a Byzantine church around the turn of the sixth century CE is more diverse, suggesting that these tesserae were produced from more than one silica source. This highlights a diversification in the supply and manufacture of glass tesserae during the Byzantine period.  相似文献   

15.
European mixed-alkali glasses are compared with Sayre and Smith's categorisation for ancient glass and with the chemical compositions of other prehistoric and later European glasses. The new categories reported here indicate that a wide range of alkali raw materials was used in the production of glasses found in prehistoric European contexts. At least five major chemical categories of glass are now known to have been used in prehistoric and early Roman Europe. A plant species of the genus Sulicorniu is suggested as a possible alkali source in ancient European glasses.  相似文献   

16.
This study presents the results of an archaeometrical investigation performed on 75 black glass beads dated to the ninth–fifth century BC coming from Bologna, Cumae, and Pozzuoli (Italy), and Chotin (Slovakia). The analyses of the major, minor, and trace elements—as well as that of Sr and Nd isotopes performed on a selection of samples coming from Bologna—provided evidence for two different production technologies in Iron Age black glass found in Italy (natron glass, probably produced in Egypt) and Slovakia (wood ash glass, probably produced in Europe). In both cases, the glasses derive their black colouration from the high presence of iron (around 12 % FeO), introduced into the glass batches through the intentional choice of dark sands. The production model appears to be small-scale and experimental, characterised by the use of non-sorted raw materials and poorly defined formulae, producing glass with a high chemical variability. The wood ash technology appears to have dropped out of use in Europe until the Medieval period, while natron production spread quickly, becoming predominant throughout the Mediterranean.  相似文献   

17.
The present paper reports results from a systematic study of oxygen isotopic compositions for glass samples from various archaeological sites (i.e., Iulia Felix, Grado, Vicenza, Pozzuoli and Modena in Italy, and Derrière Sairoche in Switzerland) and dated from the Roman period to the 18th century AD, as well as of some raw materials that may have been used for their production. The analysed samples differ essentially in the type of flux, using Roman and high Medieval glass natron and late Medieval and modern glass plant ash, soda and potash, respectively. The aim of this study was to amplify the database of oxygen isotope data for various archaeological glasses and to identify isotopic trends indicating different raw materials, production technology, and/or provenance. Results indicate that natron glass samples of various provenance and age have consistently higher δ18O values than plant ash ones (about 15.5‰ vs 13.0‰), probably due to the different flux, highly 18O-enriched in the case of natron. Isotopic data on Belus and Campanian sands, the types mentioned by Pliny for glass production, show that they have similar isotopic composition. Taking into account the oxygen isotopic composition of Roman glass, the “positive natron effect”, and the negligible influence of small amounts of manganese and antimony containing decolourisers, the suitability of both sources for glass production is verified, supporting the hypothesis of multiple sand sources. Notwithstanding this, the isotopic similarity between Belus and Campanian sands prevents us from identifying the starting material from the δ18O of the final product. In the case of plant ash used as flux, it is not possible to distinguish between soda and potash plant ash, because the addition of ash did not contribute isotopically heavy oxygen and the silica source is presumed to be comparable in the analysed samples. The isotopic data of the present study are also compared with those already published in the literature, and possible interpretations on their analogies and differences are discussed.  相似文献   

18.
The finding of considerable collections of glass artefacts, together with considerable lumps of glass chunks, fuel ash slag and kiln fragments related to glass processing strongly suggests a local secondary production (working) of glass at the Beit Ras/Capitolias archaeological site in northern Jordan from the late Roman to the early Byzantine period. The chemical analysis of ancient glasses can provide important information regarding the manufacturing technology of the glass made during a specific period. The aim of this study is to characterise the chemical and technological aspects of late Roman to early Byzantine glasses excavated from this main archaeological site. Furthermore, the present paper aims to provide incontrovertible evidence that this site must be considered as a major centre for the secondary production of glass during a period between the 3rd and the 6th centuries. For this purpose, a considerable group of raw glass chunks and vessel fragments of different colours and typologies were collected. The results of chemical analyses indicated that the glass did not show a clear difference in chemical composition between late Roman and early Byzantine times. All the glasses (artefacts and chunks) are of the soda-lime-silica type and correspond to the previously defined Levantine I glass group. The chemical composition of the glass chunks, identical to that of contemporary glass of the same colour, strongly suggests that these chunks were used for the manufacture of late Roman to early Byzantine glass at Beit Ras. The observation of technological features indicates that glass chunks were produced in massive tank furnaces in other primary production centres elsewhere, and were meant for local reworking. According to the microscopic examination, it can also be observed that mould-blowing was the main technique used for forming glass.  相似文献   

19.
The chemical analysis of excavated glass fragments from dated archaeological contexts in Raqqa, Syria, has provided a detailed picture of the chemical compositions of artefacts deriving from eighth to ninth and 11th century glassmaking and glassworking activities. Evidence for primary glass production has been found at three excavated sites, of eighth to ninth, 11th and 12th century dates; the first two are discussed here. The 2 km long industrial complex at al‐Raqqa was associated with an urban landscape consisting of two Islamic cities (al‐Raqqa and al‐Rafika) and a series of palace complexes. The glass fused and worked there was presumably for local as well as for regional consumption. Al‐Raqqa currently appears to have produced the earliest well‐dated production on record in the Middle East of an Islamic high‐magnesia glass based on an alkaline plant ash flux and quartz. An eighth to ninth century late ‘Roman’/Byzantine soda–lime recipe of natron and sand begins to be replaced in the eighth to ninth century by a plant ash – quartz Islamic soda–lime composition. By the 11th century, this process was nearly complete. The early Islamic natron glass compositional group from al‐Raqqa shows very little spread in values, indicating a repeatedly well‐controlled process with the use of chemically homogeneous raw materials. A compositionally more diffuse range of eighth to ninth century plant ash glass compositions have been identified. One is not only distinct from established groups of plant ash and natron glasses, but is believed to be the result of experimentation with new raw material combinations. Compositional analysis of primary production waste including furnace glass (raw glass adhering to furnace brick) shows that contemporary glasses of three distinct plant ash types based on various combinations of plant ash, quartz and sand were being made in al‐Raqqa during the late eighth to ninth centuries. This is a uniquely wide compositional range from an ancient glass production site, offering new insights into the complexity of Islamic glass technology at a time of change and innovation.  相似文献   

20.
Fourteen fragments of faience vessels from the Ptolemaic/Roman period found at the Egyptian site of Memphis, near Cairo, were analysed by SEM. The fragments included high‐relief polychrome vessels, which are first produced in numbers in this period. Analysis allowed the composition and microstructure of the vessels to be assessed and conclusions drawn as to the raw materials of manufacture. Combining this information with archaeological evidence from excavation of the kilns and associated finds, it was possible to reconstruct the production technology of the vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号