首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Fault intersections are the locus of hot spring activity and Carlin‐type gold mineralization within the Basin and Range, USA. Analytical and numerical solutions to Stokes equation suggest that peak fluid velocities at fault intersections increase between 20% and 47% when fracture apertures have identical widths but increase by only about 1% and 8% when aperture widths vary by a factor of 2. This suggests that fault zone intersections must have enlarged apertures. Three‐dimensional finite element models that consider intersecting 10‐ to 20‐m wide fault planes resulted in hot spring activity being preferentially located at fault zone intersections when fault zones were assigned identical permeabilities. We found that the onset of convection at the intersections of the fault zones occurred in our hydrothermal model over a narrow permeability range between 5 × 10?13 and 7 × 10?13 m2. Relatively high vertical fluid velocities (0.3–3 m year?1) extended away from the fault intersections for about 0.5–1.5 km. For the boundary conditions and fault plane dimensions used, peak discharge temperatures of 112°C at the water table occurred with an intermediate fault zone permeability of 5 × 10?13 m2. When fault plane permeability differed by a factor of 2 or more, the locus of hot spring activity shifted away from the intersections. However, increasing the permeability at the core of the fault plane intersection by 40% shifted the discharge back to the intersections. When aquifer units were assigned a permeability value equal to those of the fault planes, convective rolls developed that extend about 3 km laterally along the fault plane and into the adjacent aquifer.  相似文献   

2.
The origins of increased stream flow and spring discharge following earthquakes have been the subject of controversy, in large part because there are many models to explain observations and few measurements suitable for distinguishing between hypotheses. On October 30, 2007 a magnitude 5.5 earthquake occurred near the Alum Rock springs, California, USA. Within a day we documented a several‐fold increase in discharge. Over the following year, we have monitored a gradual return towards pre‐earthquake properties, but for the largest springs there appears to be a permanent increase in discharge. The Alum Rock springs discharge waters that are a mixture between modern (shallow) meteoric water and old (deep) connate waters expelled by regional transpression. After the earthquake, there was a small and temporary decrease in the fraction of connate water in the largest springs. Accompanying this geochemical change was a small (1–2°C) temperature decrease. Combined with the rapid response, this implies that the increased discharge has a shallow origin. Increased discharge at these springs occurs both for earthquakes that cause static volumetric expansion and for those that cause contraction, supporting models in which dynamic strains are responsible for the subsurface changes that cause flow to increase. We make a quantitative comparison between the observed changes and model predictions for three types of models: (i) a permanent increase in permeability; (ii) an increase in permeability followed by a gradual decrease to its pre‐earthquake value; and (iii) an increase of hydraulic head in the groundwater system discharging at the springs. We show that models in which the permeability of the fracture system feeding the springs increases after the earthquake are in general consistent with the changes in discharge. The postseismic decrease in discharge could either reflect the groundwater system adjusting to the new, higher permeability or a gradual return of permeability to pre‐earthquake values; the available data do not allow us to distinguish between these two scenarios. However, the response of these springs to another earthquake will provide critical constraints on the changes that occur in the subsurface and should permit a test of all three types of models.  相似文献   

3.
B. Jung  G. Garven  J. R. Boles 《Geofluids》2014,14(2):234-250
Fault permeability may vary through time due to tectonic deformations, transients in pore pressure and effective stress, and mineralization associated with water‐rock reactions. Time‐varying permeability will affect subsurface fluid migration rates and patterns of petroleum accumulation in densely faulted sedimentary basins such as those associated with the borderland basins of Southern California. This study explores the petroleum fluid dynamics of this migration. As a multiphase flow and petroleum migration case study on the role of faults, computational models for both episodic and continuous hydrocarbon migration are constructed to investigate large‐scale fluid flow and petroleum accumulation along a northern section of the Newport‐Inglewood fault zone in the Los Angeles basin, Southern California. The numerical code solves the governing equations for oil, water, and heat transport in heterogeneous and anisotropic geologic cross sections but neglects flow in the third dimension for practical applications. Our numerical results suggest that fault permeability and fluid pressure fluctuations are crucial factors for distributing hydrocarbon accumulations associated with fault zones, and they also play important roles in controlling the geologic timing for reservoir filling. Episodic flow appears to enhance hydrocarbon accumulation more strongly by enabling stepwise build‐up in oil saturation in adjacent sedimentary formations due to temporally high pore pressure and high permeability caused by periodic fault rupture. Under assumptions that fault permeability fluctuate within the range of 1–1000 millidarcys (10?15–10?12 m2) and fault pressures fluctuate within 10–80% of overpressure ratio, the estimated oil volume in the Inglewood oil field (approximately 450 million barrels oil equivalent) can be accumulated in about 24 000 years, assuming a seismically induced fluid flow event occurs every 2000 years. This episodic petroleum migration model could be more geologically important than a continuous‐flow model, when considering the observed patterns of hydrocarbons and seismically active tectonic setting of the Los Angeles basin.  相似文献   

4.
J. H. Bell  B. B. Bowen 《Geofluids》2014,14(3):251-265
Differential cement mineralogy is influenced by depositional textures, structural deformation, pore fluid chemistry, and ultimately influences landscape evolution by introducing heterogeneities in erodibility. In Southern Utah, the region West of the Kaibab uplift known as Mollies Nipple (Mollies) in Grand Staircase‐Escalante National Monument exhibits a complex history of fluid–sediment interactions, which has resulted in a localized zone of anomalous diagenetic iron sulfate (jarosite) mineralogy in a well‐exposed dune–interdune deposit within the Navajo Sandstone. Mineralogy and geochemistry of cements within this region are examined using reflectance and imaging spectroscopy, field investigations, microscopy, and whole‐rock geochemical analyses. These data show that the in‐situ jarosite cement is localized to a plane along the highest ridge of the butte, providing an armor along with other secondary cements, which controls the butte's geomorphic evolution. The jarosite cement is associated with other mineralogies suggesting that the sulfate was one of the latest fluid‐related precipitates in the paragenetic sequence. It was preceded by a regional bleaching event, precipitation of clay cements, some localized concretionary iron oxide precipitation, and formation of deformation bands. At least one generation of dense iron oxide mineralization is associated with cataclastic brittle deformation predating the sulfate precipitation. Trace element geochemistry of cements shows certain metal oxide populations associated with extremely high (>2000 ppm) arsenic values. We interpret the combination of spatial mineral distribution, observed paragenetic sequence, and trace element geochemistry to suggest this region experienced acid sulfate diagenesis along fracture‐controlled fluid conduits related to weathering of proximal, unidentified, sulfides, or H2S associated with deep source beds. Jarosite is highly soluble, and its presence suggests that abundant fluid flow has not occurred in this region since its formation. This terminal cement‐forming event must have occurred prior to sandstone exhumation and erosion to form the current extreme landscape at Mollies. This site exhibits the influence that fluid geochemistry, sedimentary mineralogy, and structural fabric have on geomorphic evolution.  相似文献   

5.
We measure the fluid transport properties of microfractures and macrofractures in low‐porosity polyphase sandstone and investigate the controls of in situ stress state on fluid flow conduits in fractured rock. For this study, the permeability and porosity of the Punchbowl Formation sandstone, a hydrothermally altered arkosic sandstone, were measured and mapped in stress space under intact, microfractured, and macrofractured deformation states. In contrast to crystalline and other sedimentary rocks, the distributed intragranular and grain‐boundary microfracturing that precedes macroscopic fracture formation has little effect on the fluid transport properties. The permeability and porosity of microfractured and intact sandstone depend strongly on mean stress and are relatively insensitive to differential stress and proximity to the frictional sliding envelope. Porosity variations occur by elastic pore closure with intergranular sliding and pore collapse caused by microfracturing along weakly cemented grain contacts. The macroscopic fractured samples are best described as a two‐component system consisting (i) a tabular fracture with a 0.5‐mm‐thick gouge zone bounded by 1 mm thick zones of concentrated transgranular and intragranular microfractures and (ii) damaged sandstone. Using bulk porosity and permeability measurements and finite element methods models, we show that the tabular fracture is at least two orders of magnitude more permeable than the host rock at mean stresses up to 90 MPa. Further, we show that the tabular fracture zone dilates as the stress state approaches the friction envelope resulting in up to a three order of magnitude increase in fracture permeability. These results indicate that the enhanced and stress‐sensitive permeability in fault damage zones and sedimentary basins composed of arkosic sandstones will be controlled by the distribution of macroscopic fractures rather than microfractures.  相似文献   

6.
Numerical simulations of multiphase CO2 behavior within faulted sandstone reservoirs examine the impact of fractures and faults on CO2 migration in potential subsurface injection systems. In southeastern Utah, some natural CO2 reservoirs are breached and CO2‐charged water flows to the surface along permeable damage zones adjacent to faults; in other sites, faulted sandstones form barriers to flow and large CO2‐filled reservoirs result. These end‐members serve as the guides for our modeling, both at sites where nature offers ‘successful’ storage and at sites where leakage has occurred. We consider two end‐member fault types: low‐permeability faults dominated by deformation‐band networks and high‐permeability faults dominated by fracture networks in damage zones adjacent to clay‐rich gouge. Equivalent permeability (k) values for the fault zones can range from <10?14 m2 for deformation‐band‐dominated faults to >10?12 m2 for fracture‐dominated faults regardless of the permeability of unfaulted sandstone. Water–CO2 fluid‐flow simulations model the injection of CO2 into high‐k sandstone (5 × 10?13 m2) with low‐k (5 × 10?17 m2) or high‐k (5 × 10?12 m2) fault zones that correspond to deformation‐band‐ or fracture‐dominated faults, respectively. After 500 days, CO2 rises to produce an inverted cone of free and dissolved CO2 that spreads laterally away from the injection well. Free CO2 fills no more than 41% of the pore space behind the advancing CO2 front, where dissolved CO2 is at or near geochemical saturation. The low‐k fault zone exerts the greatest impact on the shape of the advancing CO2 front and restricts the bulk of the dissolved and free CO2 to the region upstream of the fault barrier. In the high‐k aquifer, the high‐k fault zone exerts a small influence on the shape of the advancing CO2 front. We also model stacked reservoir seal pairs, and the fracture‐dominated fault acts as a vertical bypass, allowing upward movement of CO2 into overlying strata. High‐permeability fault zones are important pathways for CO2 to bypass unfaulted sandstone, which leads to reduce sequestration efficiency. Aquifer compartmentalization by low‐permeability fault barriers leads to improved storativity because the barriers restrict lateral CO2 migration and maximize the volume and pressure of CO2 that might be emplaced in each fault‐bound compartment. As much as a 3.5‐MPa pressure increase may develop in the injected reservoir in this model domain, which under certain conditions may lead to pressures close to the fracture pressure of the top seal.  相似文献   

7.
Faults are often important in fuelling methane seep systems; however, little is known on how different components in fault zones control subsurface fluid circulation paths and how they evolve through time. This study provides insight into fault‐related fluid flow systems that operated in the shallow subsurface of an ancient methane seep system. The Pobiti Kamani area (NE Bulgaria) encloses a well‐exposed, fault‐related seep system in unconsolidated Lower Eocene sandy deposits of the Dikilitash Formation. The Beloslav quarry and Beloslav N faults displace the Dikilitash Formation and are typified by broad, up to 80 m wide, preferentially lithified hanging wall damage zones, crosscut by deformation bands and deformation band zones, smaller slip planes and fault‐related joints. The formation of a shallow plumbing system and chimney‐like concretions in the Dikilitash Formation was followed by at least two phases of fault‐related methane fluid migration. Widespread fluid circulation through the Dikilitash sands caused massive cementation of the entire damage zones in the fault hanging walls. During this phase, paths of ascending methane fluids were locally obstructed by decimetre‐thick, continuous deformation band zones that developed in the partly lithified sands upon the onset of deformation. Once the entire damage zone was pervasively cemented, deformation proceeded through the formation of slip planes and joints. This created a new network of more localized conduits in close vicinity to the main fault plane and around through‐going slip planes. 13C‐depleted crustiform calcite cements in several joints record the last phase of focused methane fluid ascent. Their formation predated Neogene uplift and later meteoric water infiltration along the joint network. This illustrates how fault‐related fluid pathways evolved, over time, from ‘plumes’ in unconsolidated sediments above damage zones, leading to chimney fields, over widespread fluid paths, deflected by early deformation structures, to localized paths along fracture networks near the main fault.  相似文献   

8.
Thermal–hydrological–mechanical coupling processes suggest that fault permeability should undergo dynamic change as a result of seismic slip. In igneous rocks, a fault's slip surface may have much higher permeability than the surrounding rock matrix and therefore operate as a conduit for fluids. We conducted laboratory experiments to investigate changes in fracture permeability (or transmissivity) of a fault in granite due to shear slip and cyclic heating and cooling. Our experiments showed that high initial fracture transmissivity (>10?18 m3) was associated with a high friction coefficient and that transmissivity decreased during slip. We propose that this reduction in transmissivity reflects the presence of gouge in fracture voids, increasing the area of contact in the fault plane and reducing the hydraulic aperture. In contrast, when initial fracture transmissivity was low (<10?18 m3), we observed that friction was lower and transmissivity increased during slip. The high transmissivity and high friction may be explained by large areas of bare rock being in contact on the slip surface. Slip velocity had little influence on the evolution of permeability, probably because gouge produced at different slip velocities had similar grain size distributions, or because gouge leaked from the slip surface. Transmissivity decreased with increasing temperature in heating tests, probably due to thermal expansion increasing normal stress on the fracture. Frictional heating did not influence transmissivity during the shearing tests.  相似文献   

9.
We documented the porosity, permeability, pore geometry, pore type, textural anisotropy, and capillary pressure of carbonate rock samples collected along basin‐bounding normal faults in central Italy. The study samples consist of one Mesozoic platform carbonate host rock with low porosity and permeability, four fractured host rocks of the damage zones, and four fault rocks of the fault cores. The four fractured samples have high secondary porosity, due to elongated, connected, soft pores that provide fluid pathways in the damage zone. We modeled this zone as an elastic cracked medium, and used the Budiansky–O'Connell correlation to compute its permeability from the measured elastic moduli. This correlation can be applied only to fractured rocks with large secondary porosity and high‐aspect ratio pores. The four fault rock samples are made up of survivor clasts embedded in fine carbonate matrices and cements with sub‐spherical, stiff pores. The low porosity and permeability of these rocks, and their high values of capillary pressure, are consistent with the fault core sealing as much as 77 and 140 m of gas and oil columns, respectively. We modeled the fault core as a granular medium, and used the Kozeny–Carmen correlation, assigning the value of 5 to the Kozeny constant, to compute its permeability from the measured porosities and pore radii. The permeability structure of the normal faults is composed of two main units with unique hydraulic characteristics: a granular fault core that acts as a seal to cross‐fault fluid flow, and an elastic cracked damage zone that surrounds the core and forms a conduit for fluid flow. Transient pathways for along‐fault fluid flow may form in the fault core during seismic faulting due to the formation of opening‐mode fractures within the cemented fault rocks.  相似文献   

10.
Among hydrogeological processes, free convection in faults has been cited as a possible cause of gold mineralization along major fault zones. Here, we investigate the effects of free convection to determine whether it can cause giant orogenic gold deposits and their regular spatial distribution along major fault/shear zones. The approach comprises: (i) coupled two- and three-dimensional numerical heat- and fluid-flow simulations of simplified geological models; and (ii) calculation of the rock alteration index (RAI) to delineate regions where precipitation/dissolution can occur. Then, comparing the deduced alteration patterns with temperature distribution, potential areas of gold mineralization, defined by T  > 200°C and RAI < 0, are predicted. The models are based on the orogenic Paleoproterozoic ore deposits of the Ashanti belt in western Africa. These deposits occur in the most permeable parts of the fault zone, where the lateral permeability contrast is the highest. For a simple geometry, with a fault zone adjacent to a sedimentary basin half as permeable, we note a transition from three-dimensional circulation within the fault to a two-dimensional convective pattern in the basin far from the fault. Moreover, whereas two-dimensional undulated isotherms dominate in the basin, three-dimensional corrugated isotherms result from the preferred convective pattern within the fault, thus enhancing a periodic distribution of thermal highs and lows. In our most elaborate three-dimensional model with an imposed lateral permeability gradient, the RAI distribution indicates that fluid circulation in fault zones gives rise to a spatial periodicity of alteration patterns consistent with field data.  相似文献   

11.
A long‐term pump test was conducted in the KTB pilot borehole (KTB‐VB), located in the Oberpfalz area, Germany. It produced 22 300 m3 of formation fluid. Initially, fluid production rate was 29 l min?1 for 4 months, but was then raised to an average of 57 l min?1 for eight more months. The aim of this study was to examine the fluid parameters and hydraulic properties of fractured, crystalline crusts as part of the new KTB programme ‘Energy and Fluid Transport in Continental Fault Systems’. KTB‐VB has an open‐hole section from 3850 to 4000 m depth that is in hydraulic contact with a prominent continental fault system in the area, called SE2. Salinity and temperature of the fluid inside the borehole, and consequently hydrostatic pressure, changed significantly throughout the test. Influence of these quantities on variations in fluid density had to be taken into account for interpretation of the pump test. Modelling of the pressure response related to the pumping was achieved assuming the validity of linear Darcy flow and permeability to be independent of the flow rate. Following the principle ‘minimum in model dimension’, we first examined whether the pressure response can be explained by an equivalent model where rock properties around the borehole are axially symmetric. Calculations show that the observed pressure data in KTB‐VB can in fact be reproduced through such a configuration. For the period of high pumping rate (57 l min?1) and the following recovery phase, the resulting parameters are 2.4 × 10?13 m3 in hydraulic transmissivity and 3.7 × 10?9 m Pa?1 in storativity for radial distances up to 187 m, and 4.7 × 10?14 m3 and 6.0 × 10?9 m Pa?1, respectively, for radial distances between 187 and 1200 m. The former pair of values mainly reflect the hydraulic properties of the fault zone SE2. For a more realistic hydraulic study on a greater scale, program FEFLOW was used. Parameter values were obtained by matching the calculated induced pressure signal to fluid‐level variations observed in the KTB main hole (KTB‐HB) located at 200 m radial distance from KTB‐VB. KTB‐HB is uncased from 9031 to 9100 m and shows indications of leakage in the casing at depths 5200–5600 m. Analysis of the pressure record and hydraulic modelling suggest the existence of a weak hydraulic communication between the two boreholes, probably at depths around the leakage. Hydraulic modelling of a major slug‐test in KTB‐HB that was run during the pumping in KTB‐VB reveals the effective transmissivity of the connected formation to be 1 to 2 orders of magnitude lower than the one determined for the SE2 fault zone.  相似文献   

12.
J. P. FAIRLEY 《Geofluids》2009,9(2):153-166
Previous studies have shown that most hydrothermal systems discharging at the land surface are associated with faulting, and that the location, temperature and rate of discharge of these systems are controlled by the geometry and style of the controlling fault(s). Unfortunately, the transport of heat and fluid in fault-controlled hydrothermal systems is difficult to model realistically; although heterogeneity and anisotropy are assumed to place important controls on flow in faults, few data or observations are available to constrain the distribution of hydraulic properties within active faults. Here, analytical and numerical models are combined with geostatistical models of spatially varying hydraulic properties to model the flow of heat and fluid in the Borax Lake fault of south-east Oregon, USA. A geometric mean permeability within the fault of 7 × 10−14 m2 with 2× vertical/horizontal anisotropy in correlation length scale is shown to give the closest match to field observations. Furthermore, the simulations demonstrate that continuity of flow paths is an important factor in reproducing the observed behavior. In addition to providing some insight into possible spatial distributions of hydraulic properties at the Borax Lake site, the study highlights one potential avenue for integrating field observations with simulation results in order to gain greater understanding of fluid flow in faults and fault-controlled hydrothermal and petroleum reservoirs.  相似文献   

13.
F. H. Weinlich 《Geofluids》2014,14(2):143-159
The ascent of magmatic carbon dioxide in the western Eger (Oh?e) Rift is interlinked with the fault systems of the Variscian basement. In the Cheb Basin, the minimum CO2 flux is about 160 m3 h?1, with a diminishing trend towards the north and ceasing in the main epicentral area of the Northwest Bohemian swarm earthquakes. The ascending CO2 forms Ca‐Mg‐HCO3 type waters by leaching of cations from the fault planes and creates clay minerals, such as kaolinite, as alteration products on affected fault planes. These mineral reactions result in fault weakness and in hydraulically interconnected fault network. This leads to a decrease in the friction coefficient of the Coulomb failure stress (CFS) and to fault creep as stress build‐up cannot occur in the weak segments. At the transition zone in the north of the Cheb Basin, between areas of weak, fluid conductive faults and areas of locked faults with frictional strength, fluid pressure can increase resulting in stress build‐up. This can trigger strike‐slip swarm earthquakes. Fault creep or movements in weak segments may support a stress build‐up in the transition area by transmitting fluid pressure pulses. Additionally to fluid‐driven triggering models, it is important to consider that fluids ascending along faults are CO2‐supersaturated thus intensifying the effect of fluid flow. The enforced flow of CO2‐supersaturated fluids in the transitional zone from high to low permeability segments through narrowings triggers gas exsolution and may generate pressure fluctuations. Phase separation starts according to the phase behaviour of CO2‐H2O systems in the seismically active depths of NW Bohemia and may explain the vertical distribution of the seismicity. Changes in the size of the fluid transport channels in the fault systems caused, or superimposed, by fault movements, can produce fluid pressure increases or pulses, which are the precondition for triggering fluid‐induced swarm earthquakes.  相似文献   

14.
The elemental fluxes and heat flow associated with large aquifer systems can be significant both at local and at regional scales. In fact, large amounts of heat transported by regional groundwater flow can affect the subsurface thermal regime, and the amount of matter discharged towards the surface by large spring systems can be significant relative to the elemental fluxes of surface waters. The Narni‐Amelia regional aquifer system (Central Italy) discharges more than 13 m3 sec?1 of groundwater characterised by a slight thermal anomaly, high salinity and high pCO2. During circulation in the regional aquifer, groundwater reacts with the host rocks (dolostones, limestones and evaporites) and mixes with deep CO2‐rich fluids of mantle origin. These processes transfer large amounts of dissolved substances, in particular carbon dioxide, and a considerable amount of heat towards the surface. Because practically all the water circulating in the Narni‐Amelia system is discharged by few large springs (Stifone‐Montoro), the mass and energy balance of these springs can give a good estimation of the mass and heat transported from the entire system towards the surface. By means of a detailed mass and balance of the aquifer and considering the soil CO2 fluxes measured from the main gas emission of the region, we computed a total CO2 discharge of about 7.8 × 109 mol a?1 for the whole Narni‐Amelia system. Finally, considering the enthalpy difference between infiltrating water and water discharged by the springs, we computed an advective heat transfer related to groundwater flow of 410 ± 50 MW.  相似文献   

15.
Thermal springs are commonly thought to be an indicator of geothermal resource potential. However, there have been few analyses of the relationship between thermal springs and the underlying thermal regime. An examination of temperature and discharge rates for a large database of thermal springs in North America demonstrates that there is not a simple relationship between these measurements made at the surface and subsurface heat flow. Hydrogeological factors appear to exert strong controls on the temperature and discharge at these springs and should be carefully considered in geothermal resource assessments.  相似文献   

16.
The currently active fluid regime within the outboard region of the Southern Alps, New Zealand was investigated using a combination of field observations, carbon‐ and oxygen‐stable isotopes from fault‐hosted calcites and interpretation of magnetotelluric (MT) data. Active faulting in the region is dominated by NE striking and N striking, oppositely dipping thrust fault pairs. Stable isotopic analyses of calcites hosted within these fault zones range from 10 to 25‰δ18O and from ?33 to 0‰δ13C. These values reflect mixing of three parent fluids: meteoric water, carbon‐exchanged groundwater and minor deeper rock‐exchanged fluids, at temperatures of 10–90°C in the upper 3–4 km of the crust. A broad, ‘U‐shaped’ zone of high electrical conductivity (maximum depth c. 28 km) underlies the central Southern Alps. In the ductile region of the crust, the high‐conductivity zone is subhorizontal. Near‐vertical zones of high conductivity extend upward to the surface on both sides of the conductive zone. On the outboard side of the orogen, the conductive zone reaches the surface coincident with the trace of the active Forest Creek Faults. Near‐surface flow is shown to dominate the outboard region. Topographically driven meteoric water interacts, on a kilometre scale, with either carbon‐exchanged groundwater or directly with organic material within Pliocene gravels, resulting in a distinctive low 13C signal within fault‐hosted calcites of the outboard region. The high‐strain zone in the lower crust focuses the migration of deeply sourced fluids upward to the base of the brittle–ductile transition. Interconnected fluid is imaged as a narrow vertical zone of high conductivity in the upper crust, implying continuous permeability and possibly buoyancy‐driven flow of deeply sourced fluids to higher levels of the crust where they are detected by the isotopic analysis of the fault‐hosted calcites.  相似文献   

17.
The Miocene siliciclastic sediments infilling the Vallès‐Penedès half‐graben are affected by two sets of structures developed during the extensional tectonics that created the basin. The first set, represented by extension fractures infilled with mud and sands, is attributed to seismically induced liquefaction. The second set, represented by normal faults, corresponds to a high‐permeability horsetail extensional fracture mesh developed near the surface in the hanging walls of normal faults. The incremental character of the vein‐fills indicates episodic changes in the tectonic stress state and fault zone permeability. Two episodes of fluid migration are recorded. The first episode occurred prior to consolidation and lithification when shallow burial conditions allowed oxidizing meteoric waters to flow horizontally through the more porous and permeable sandy layers. Development of clastic dikes allowed local upward flow and dewatering of the sandy beds. Liquefaction and expulsion of fluids were probably driven by seismic shaking. During the first episode of fluid migration there was no cementation of the sandstone or within the fractures, probably because little fluid was mobilized by the predominantly compaction‐driven flow regime. The second episode of fluid migration occurred synchronously with normal fault development, during which time the faults acted as fluid conduits. Fluids enriched in manganese, probably leached from local manganese oxyhydroxides soon after sedimentation, moved laterally and produced cementation in the sandstone layers, eventually arriving at the more porous and permeable fault pathways that connected compartments of different porosities and permeabilities. Carbonate probably precipitated in fractures saturated with meteoric water near the ground surface at a transitional redox potential. Once the faults became occluded by calcite cement, shortly after fault development, they became barriers to both vertical and horizontal fluid flow.  相似文献   

18.
A variety of data indicate that the Carbonate aquifer in southern Manitoba is a heterogeneous and anisotropic aquifer wherein groundwater flow follows preferred flow path networks. Specific capacity tests show that aquifer transmissivity can vary by up to four orders of magnitude within 1 km. Geostatistical analysis reveals a strong anisotropy in the transmissivity field, with better spatial continuity in NE–SW and NW–SE directions, coincident with the dominant orientations of fractures observed in bedrock exposures. However, discrepancies between the orientation of highest fracture density and best transmissivity continuity suggest that either additional geological factors control the preferred flow network or there is a biased representation of the fracture pattern because all direct fracture observations came from the northern part of the study area. In an effort to investigate whether the geographically biased fracture data set represents the fracture pattern for the whole region, Landsat images and digital elevation maps were processed to extract linear features that may indicate subsurface fracture zones in areas where bedrock is covered by glacial sediments. The results suggest a consistent fracture pattern throughout the study area, indicating that the two observed fracture groups might have gone through different processes in terms of permeability development. Alteration by mineral cementation and dissolution along fracture surfaces may have preferentially improved the fracture permeability in one orientation, while reducing it in the other. The in situ stress field is also believed to play a major role in the preferred regional flow network. This paper discusses the evidence for the preferred flow path network and possible geological factors controlling aquifer anisotropy in this region.  相似文献   

19.
The German Continental Deep Drilling Program comprising a pilot borehole down to 4000 m and a main borehole down to 9101 m in southeast Germany (KTB) is continuing to provide a unique opportunity for the identification of important factors and processes in deep‐seated fluid and energy transfer. In situ stress conditions significantly impact flow, transport and exchange characteristics of fracture networks that dominate the permeability of crystalline reservoir rocks. In this paper, several scales of information are combined to present a fully three‐dimensional hydraulic finite element model of the principal KTB fault zones, and linked to a geomechanical model describing the alteration of the hydraulic parameters with stress changes caused by fluid extraction. The concept of geomechanical facies is introduced to define and characterize architectural elements in the subsurface system. Evaluation of a long‐term pump test in the KTB pilot hole, June 2002–July 2003, coupled with a geomechanical model gives an insight into some of the elastic and nonelastic processes controlling hydraulic transport in the basement rocks. Trends in the decline of the permeability and the degree of storage in the system could only partially be explained by elastic processes, clearly indicating the importance of nonelastic processes. A number of inelastic processes are suggested as areas for further research.  相似文献   

20.
The concept of ground ice is expanded to cover all forms of ice formed at the interface between two environments—the solid state and the gaseous. Ground ice is thus defined as the product of the layer-by-layer freezing of liquid water or droplets of any origin as it passes from a zone of positive temperatures into a zone below the freezing point. Ground ice may be produced by subsurface waters (springs and groundwater), surface waters (river, lake, sea, glacier and snow meltwater) and atmospheric moisture (glaze, rime, hail). [The definition excludes ice formed within the solid-state environment of the lithosphere (segregated ice, cement ice, injection ice).] Ground ice produced by subsurface waters may be formed at the surface or in large subterranean cavities, and it may be associated with the natural discharge of water or with the freezing of aquifers. Ground ice produced by surface waters may be associated with an increase of water volume in a waterbody as the level of the ice cover remains stable; with a constriction of the discharge cross section, and with changes in heat and moisture exchange. Ground ice derived from atmospheric moisture is formed either on terrestrial objects (glaze, rime) or in the free atmosphere (hail, ice formed on aircraft).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号