首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the North Aegean Domain, Thassos Island contains a Plio‐Pleistocene basin controlled by a large‐scale flat‐ramp extensional system with a potential décollement located at depth within a marble unit. Numerous mineralizations associated with normal faults of Plio‐Pleistocene age are the sign of fluid circulation during extension. Two main generations of fluid flow are recognized, related to Plio‐Pleistocene extension. A first circulation under high‐temperature conditions (about 100–200°C) resulted in dolomitization of marbles near the base of the Plio‐Pleistocene basin. The dolomites are characterized by low δ18O values (down to 11‰ versus Standard Mean Ocean Water). Some cataclastic deformation affected the dolomites. Hydrothermal quartz that crystallized in extension veins above a blind ramp also has low δ18O values (about 13‰). This shows that high‐temperature fluids moved up from the décollement level toward the surface. A second downward circulation of continental waters at near‐surface temperature is documented by calcite veins in fault zones and at the base of the Plio‐Pleistocene basin. These veins have O isotope values relatively constant at about 23–25‰ and C isotope values intermediate between the high δ13C value of the carbonate host rock (about 1–3‰ versus Peedee Belemnite) and the low δ13C value of soil‐derived carbon (?10‰). The calcites associated with the oxidative remobilization of primary sulphide Zn–Pb mineralization of Thassos carbonates have comparable O and C isotope compositions. Hot fluids, within the 100–200°C temperature range, have likely contributed to the weakening of the lower marble unit of Thassos and, thus, to the process of décollement.  相似文献   

2.
An integrated fluid inclusion and stable isotope study was carried out on hydrothermal veins (Sb‐bearing quartz veins, metal‐bearing fluorite–barite–quartz veins) from the Schwarzwald district, Germany. A total number of 106 Variscan (quartz veins related to Variscan orogenic processes) and post‐Variscan deposits were studied by microthermometry, Raman spectroscopy, and stable isotope analysis. The fluid inclusions in Variscan quartz veins are of the H2O–NaCl–(KCl) type, have low salinities (0–10 wt.% eqv. NaCl) and high Th values (150–350°C). Oxygen isotope data for quartz range from +2.8‰ to +12.2‰ and calculated δ18OH2O values of the fluid are between ?12.5‰ and +4.4‰. The δD values of water extracted from fluid inclusions vary between ?49‰ and +4‰. The geological framework, fluid inclusion and stable isotope characteristics of the Variscan veins suggest an origin from regional metamorphic devolatilization processes. By contrast, the fluid inclusions in post‐Variscan fluorite, calcite, barite, quartz, and sphalerite belong to the H2O–NaCl–CaCl2 type, have high salinities (22–25 wt.% eqv. NaCl) and lower Th values of 90–200°C. A low‐salinity fluid (0–15 wt.% eqv. NaCl) was observed in late‐stage fluorite, calcite, and quartz, which was trapped at similar temperatures. The δ18O values of quartz range between +11.1‰ and +20.9‰, which translates into calculated δ18OH2O values between ?11.0‰ and +4.4‰. This range is consistent with δ18OH2O values of fluid inclusion water extracted from fluorite (?11.6‰ to +1.1‰). The δD values of directly measured fluid inclusion water range between ?29‰ and ?1‰, ?26‰ and ?15‰, and ?63‰ and +9‰ for fluorite, quartz, and calcite, respectively. Calculations using the fluid inclusion and isotope data point to formation of the fluorite–barite–quartz veins under near‐hydrostatic conditions. The δ18OH2O and δD data, particularly the observed wide range in δD, indicate that the mineralization formed through large‐scale mixing of a basement‐derived saline NaCl–CaCl2 brine with meteoric water. Our comprehensive study provides evidence for two fundamentally different fluid systems in the crystalline basement. The Variscan fluid regime is dominated by fluids generated through metamorphic devolatilization and fluid expulsion driven by compressional nappe tectonics. The onset of post‐Variscan extensional tectonics resulted in replacement of the orogenic fluid regime by fluids which have distinct compositional characteristics and are related to a change in the principal fluid sources and the general fluid flow patterns. This younger system shows remarkably persistent geochemical and isotopic features over a prolonged period of more than 100 Ma.  相似文献   

3.
Fractures are important conduits for fluid flow in the Earth's crust. To better understand the spatial and temporal relations among fracturing, fracture sealing, and fluid flow, we have studied fractures, faults, and veins in a large dome (Jabal Akhdar) in the Oman mountains. Our work combines the results of meso‐ and microstructural analyses and stable isotope analyses. Seven generations of fractures and veins have been identified in the carbonate‐dominated dome. The earliest generations of veins developed during extension and subsidence of the Mesozoic basin. These veins formed in the inclined segments of bedding‐parallel stylolites and in extensional fractures that are perpendicular to bedding (#1 and #2, respectively). These extension‐related veins are truncated by bedding‐parallel veins (#4) that formed during top‐to‐north bedding‐parallel shear of both the northern and southern limbs of the dome. These veins are consistent with a change in stress regime and may be related to an earlier generation of strongly deformed pinch‐and‐swell veins (#3) that are exposed locally on the southern limb of the dome. Normal faults contain a set of en‐echelon tension gashes (#5) and veins emplaced in dilational jogs along the fault planes (#6). In the northern part of the dome, veins (#7) associated with thrusts post‐date the normal faults. Samples of veins and their host rocks were analyzed to provide information on fluid‐rock interaction in the dome and the scale(s) of fluid movement. Oxygen isotope values range from +16.2 to +29.3‰; carbon isotope values range from 0 to +3.6‰. The results of the structural and isotopic analyses are consistent with the early veins (#2–#5) having precipitated from overpressured fluid in a isotopically rock‐buffered system. During normal faulting (#5 and #6), a more open system allowed external fluid to infiltrate the dome at drained conditions and precipitate the youngest sets of veins (#6 and #7).  相似文献   

4.
Metalliferous (Fe–Cu–Pb–Zn) quartz–carbonate–sulphide veins cut greenschist to epidote–amphibolite facies metamorphic rocks of the Dalradian, SW Scottish Highlands, with NE–SW to NW–SE trends, approximately parallel or perpendicular to regional structures. Early quartz was followed by pyrite, chalcopyrite, sphalerite, galena, barite, late dolomite–ankerite and clays. Both quartz–sulphide and carbonate vein mineralisation is associated with brecciation, indicating rapid release of fluid overpressure and hydraulic fracturing. Two distinct mineralising fluids were identified from fluid inclusion and stable isotope studies. High temperature (>350°C) quartz‐precipitating fluids were moderately saline (4.0–12.7 wt.% NaCl equivalent) with low (approximately 0.05). Quartz δ18O (+11.7 to +16.5‰) and sulphide δ34S (?13.6 to ?1.1‰) indicate isotopic equilibrium with host metasediments (rock buffering) and a local metasedimentary source of sulphur. Later, low‐temperature (TH = 120–200°C) fluids, probably associated with secondary carbonate, barite and clay formation, were also moderately saline (3.8–9.1 wt.% NaCl equivalent), but were strongly enriched in 18O relative to host Dalradian lithologies, as indicated by secondary dolomite–ankerite (δ18O = +17.0 to +29.0‰, δ13C = ?1.0 to ?3.0‰). Compositions of carbonate–forming fluids were externally buffered. The veins record the fluid–rock interaction history of metamorphic host rocks during cooling, uplift and later extension. Early vein quartz precipitated under retrograde greenschist facies conditions from fluids probably derived by syn‐metamorphic dehydration of deeper, higher‐grade rocks during uplift and cooling of the Caledonian metamorphic complex. Veins are similar to those of mesothermal veins in younger Phanerozoic metamorphic belts, but are rare in the Scottish Dalradian. Early quartz veins were reactivated by deep penetration of low‐temperature basin fluids that precipitated carbonate and clays in veins and adjacent Dalradian metasediments throughout the SW Highlands, probably in the Permo‐Carboniferous. This event is consistent with paragenetically ambiguous barite with δ34S characteristic of late Palaeozoic basinal brines.  相似文献   

5.
A group of 400–500 m long, bedding‐parallel calcite veins are exposed in the central La Popa Basin of northeastern Mexico. These veins provide a unique opportunity to determine the kilometer‐scale fluid–rock system associated with bedding‐parallel vein formation, and to test for sampling bias in studies that often use one or two samples to constrain the characteristics of regional‐scale paleohydrogeological systems. We use fluid inclusion microthermometry in conjunction with measurements of δ13C, δ18O, and 87Sr/86Sr ratios to constrain the vein‐forming fluid temperatures, compositions and sources, and compare these values along and between the veins to establish the homogeneity of the vein‐forming fluids and fluid–rock system. The δ13C values of the veins are close to those of the host rock, and average – 3.96‰ (PDB). The δ18O values of the veins are typically 1‰ lower than those of the host rocks, and average – 9.54‰ (PDB). Fluid inclusion homogenization temperatures average 137°C and inclusion salinities are all <6 wt% NaCl equivalent. The 87Sr/86Sr ratios of the veins average 0.70731 and are substantially lower than the values expected for the host rock. Calculated fluid δ18O values range from 4 to 10‰ (SMOW). The isotopic and microthermometric data indicate the veins most likely formed at depths of 3–4 km when meteoric water mixed with upward migrating, warm basinal brines. Vein microstructures and field characteristics indicate they formed from multiple slip events that most likely were associated with transport of individual fluid pulses that migrated along bedding planes. The large‐scale homogeneity of vein geochemistry is remarkable and demonstrates that only one or two samples would be sufficient to accurately characterize the kilometer‐scale paleohydrogeological system for these veins.  相似文献   

6.
We present a structural, microstructural, and stable isotope study of a calcite vein mesh within the Cretaceous Natih Formation in the Oman Mountains to explore changes in fluid pathways during vein formation. Stage 1 veins form a mesh of steeply dipping crack‐seal extension veins confined to a 3.5‐m‐thick stratigraphic interval. Different strike orientations of Stage 1 veins show mutually crosscutting relationships. Stage 2 veins occur in the dilatant parts of a younger normal fault interpreted to penetrate the stratigraphy below. The δ18O composition of the host rock ranges from 21.8‰ to 23.7‰. The δ13C composition ranges from 1.5‰ to 2.3‰. This range is consistent with regionally developed diagenetic alteration at top of the Natih Formation. The δ18O composition of vein calcite varies from 22.5‰ to 26.2‰, whereas δ13C composition ranges from ?0.8‰ to 2.1‰. A first trend observed in Stage 1 veins involves a decrease of δ13C to compositions nearly 1.3‰ lower than the host rock, whereas δ18O remains constant. A second trend observed in Stage 2 calcite has δ18O values up to 3.3‰ higher than the host rock, whereas the δ13C composition is similar. Stable isotope data and microstructures indicate an episodic flow regime for both stages. During Stage 1, formation of a stratabound vein mesh involved bedding‐parallel flow, under near‐lithostatic fluid pressures. The 18O fluid composition was host rock‐buffered, whereas 13C composition was relatively depleted. This may reflect reaction of low 13C CO2 derived by fluid interaction with organic matter in the limestones. Stage 2 vein formation is associated with fault‐controlled fluid flow accessing fluids in equilibrium with limestones about 50 m beneath. We highlight how evolution of effective stress states and the growth of faults influence the hydraulic connectivity in fracture networks and we demonstrate the value of stable isotopes in tracking changes in fluid pathways.  相似文献   

7.
The province of Burdur (SW Turkey) is seismically an active region. A structural, geochronological, petrographical, geochemical and fluid inclusion study of extension veins and fault‐related calcite precipitates has been undertaken to reconstruct the palaeofluid flow pattern in this normal fault setting in the Aegean region. A palaeostress analysis and U/Th dating of the precipitates reveals the neotectonic significance of the sampled calcites. Fluid inclusion microthermometry of calcites‐filling extension veins shows final melting temperatures (Tm ice) of 0°C. This indicates pure water, most likely of meteoric origin. The oxygen isotope values (?9.8‰ to ?6.5‰ VPDB) and the carbon isotopic composition (?10.4‰ to ?2.9‰ VPDB) of these calcites also show a near‐surface meteoric origin of the fluid responsible for precipitation. The microstructural characteristics of fault‐related calcites indicate that calcite precipitation was linked with fault activity. Final melting temperature of fault‐related calcites ranges between 0 and ?1.9°C. The oxygen isotope values show a broad range between ?15.0‰ and ?2.2‰ VPDB. Several of these calcites have a δ18O composition that is higher or lower than the oxygen isotopic composition of meteoric calcites in the area (i.e. between ?10‰ and ?6‰ VPDB). The δ13C composition largely falls within the range of the host limestones and reflects a rock‐buffered system. Microthermometry and stable isotopic study indicate a meteoric origin of the fluids with some degree of water–rock interaction or mixing with another fluid. Temperatures deduced from microthermometry and stable isotope analyses indicate precipitation temperatures around 50°C. These higher temperatures and the evidence for water–rock interaction indicate a flow path long enough to equilibrate with the host–rock limestone and to increase the temperature. The combined study of extension vein‐ and fault‐related calcite precipitates enables determining the origin of the fluids responsible for precipitation in a normal fault setting. Meteoric water infiltrated in the limestones to a depth of at least 1 km and underwent water–rock interaction or mixing with a residual fluid. This fluid was, moreover, tapped during fault activity. The extension veins, on the contrary, were passively filled with calcites precipitating from the downwards‐migrating meteoric water.  相似文献   

8.
This study reconstructs the palaeohydrogeologic evolution of the shallow‐to‐moderate Mesozoic subsidence history for the Mecsekalja Zone (MZ), a narrow metamorphic belt in the eastern Mecsek Mountains, Hungary. Brittle deformation of the MZ produced a vein system with a cement history consisting of five sequential carbonate generations and one quartz phase. Vein textures suggest different fluid‐flow mechanisms for the parent fluids of subsequent cement generations. Combined microthermometric and stable‐isotope measurements permit reconstruction of the character of subsequent fluid generations with different flow types, as defined by vein textures, yielding new information regarding the hydraulic behaviour of a metamorphic crystalline complex. Textural observations and geochemical data suggest that fracture‐controlled flow pathways and externally derived fluids were typical of some flow events, while percolation through the rock matrix and the relationship to the Cretaceous volcanism and dyke emplacement were typical of others. The difference in the mode of calcite deposition from pervasive fluids (i.e. pervasive carbonatisation along grain boundaries versus deposition in antitaxial veins) between two calcite generations related to the volcanism inspired a stress‐dependent model of antitaxial vein growth. Textural and isotope variations in a vein generation produced by the same parent fluid indicate rock‐dependent hydraulic behaviour for different rock types, distinct action of the contemporaneous fracture systems and different extents of fluid–rock interaction. Cathodoluminescence microscopy and fluid‐inclusion microthermometry shed light on the possible role of hydraulic fracturing in the formation of massive calcite. The time of formation was estimated from the isotope composition of the oldest calcite generation and its presumptive relationship with the sedimentary sequences to the north, whereas microthermometry permitted conciliation of the reconstructed flow sequence with the Mesozoic subsidence history of the Mórágy Block (including the MZ).  相似文献   

9.
Structural, petrographic, and isotopic data for calcite veins and carbonate host‐rocks from the Sevier thrust front of SW Montana record syntectonic infiltration by H2O‐rich fluids with meteoric oxygen isotope compositions. Multiple generations of calcite veins record protracted fluid flow associated with regional Cretaceous contraction and subsequent Eocene extension. Vein mineralization occurred during single and multiple mineralization events, at times under elevated fluid pressures. Low salinity (Tm = ?0.6°C to +3.6°C, as NaCl equivalent salinities) and low temperature (estimated 50–80°C for Cretaceous veins, 60–80°C for Eocene veins) fluids interacted with wall‐rock carbonates at shallow depths (3–4 km in the Cretaceous, 2–3 km in the Eocene) during deformation. Shear and extensional veins of all ages show significant intra‐ and inter‐vein variation in δ18O and δ13C. Carbonate host‐rocks have a mean δ18OV‐SMOW value of +22.2 ± 3‰ (1σ), and both the Cretaceous veins and Eocene veins have δ18O ranging from values similar to those of the host‐rocks to as low as +5 to +6‰. The variation in vein δ13CV‐PDB of ?1 to approximately +6‰ is attributed to original stratigraphic variation and C isotope exchange with hydrocarbons. Using the estimated temperature ranges for vein formation, fluid (as H2O) δ18O calculated from Cretaceous vein compositions for the Tendoy and Four Eyes Canyon thrust sheets are ?18.5 to ?12.5‰. For the Eocene veins within the Four Eyes Canyon thrust sheet, calculated H2O δ18O values are ?16.3 to ?13.5‰. Fluid–rock exchange was localized along fractures and was likely coincident with hydrocarbon migration. Paleotemperature determinations and stable isotope data for veins are consistent with the infiltration of the foreland thrust sheets by meteoric waters, throughout both Sevier orogenesis and subsequent orogenic collapse. The cessation of the Sevier orogeny was coincident with an evolving paleogeographic landscape associated with the retreat of the Western Interior Seaway and the emergence of the thrust front and foreland basin. Meteoric waters penetrated the foreland carbonate thrust sheets of the Sevier orogeny utilizing an evolving mesoscopic fracture network, which was kinematically related to regional thrust structures. The uncertainty in the temperature estimates for the Cretaceous and Eocene vein formation prevents a more detailed assessment of the temporal evolution in meteoric water δ18O related to changing paleogeography. Meteoric water‐influenced δ18O values calculated here for Cretaceous to Eocene vein‐forming fluids are similar to those previously proposed for surface waters in the Eocene, and those observed for modern‐day precipitation, in this part of the Idaho‐Montana thrust belt.  相似文献   

10.
The Jian copper deposit, located on the eastern edge of the Sanandaj–Sirjan metamorphic zone, southwest of Iran, is contained within the Surian Permo‐Triassic volcano‐sedimentary complex. Retrograde metamorphism resulted in three stages of mineralization (quartz ± sulfide veins) during exhumation of the Surian metamorphic complex (Middle Jurassic time; 159–167 Ma), and after the peak of the metamorphism (Middle to Late Triassic time; approximately 187 Ma). The early stage of mineralization (stage 1) is related to a homogeneous H2O–CO2 (XCO2 > 0.1) fluid characterized by moderate salinity (<10 wt.% NaCl equivalent) at high temperature and pressure (>370°C, >3 kbar). Early quartz was followed by small amounts of disseminated fine‐grained pyrite and chalcopyrite. Most of the main‐ore‐stage (stage 2) minerals, including chalcopyrite, pyrite and minor sphalerite, pyrrhotite, and galena, precipitated from an aqueous‐carbonic fluid (8–18 wt.% NaCl equivalent) at temperatures ranging between 241 and 388°C during fluid unmixing process (CO2 effervescence). Fluid unmixing in the primary carbonaceous fluid at pressures of 1.5–3 kbar produced a high XCO2 (>0.05) and a low XCO2 (<0.01) aqueous fluid in ore‐bearing quartz veins. Oxygen and hydrogen isotope compositions suggest mineralization by fluids derived from metamorphic dehydration (δ18Ofluid = +7.6 to +10.7‰ and δD = ?33.1 to ?38.5‰) during stage 2. The late stage (stage 3) is related to a distinct low salinity (1.5–8 wt.% NaCl equivalent) and temperatures of (120–230°C) aqueous fluid at pressures below 1.5 kbar and the deposition of post‐ore barren quartz veins. These fluids probably derived from meteoric waters, which circulated through the metamorphic pile at sufficiently high temperatures and acquire the characteristics of metamorphic fluids (δ18Ofluid = +4.7 to +5.1‰ and δD = ?52.3 to ?53.9‰) during waning stages of the postearly Cimmerian orogeny in Surian complex. The sulfide‐bearing quartz veins are interpreted as a small‐scale example of redistribution of mineral deposits by metamorphic fluids. This study suggests that mineralization at the Jian deposit is metamorphogenic in style, probably related to a deep‐seated mesothermal system.  相似文献   

11.
The chemical evolution of fluids in Alpine fissure veins (open cavities with large free‐standing crystals) has been studied by combination of fluid inclusion petrography, microthermometry, LA‐ICPMS microanalysis, and thermodynamic modeling. The quartz vein systems cover a metamorphic cross section through the Central Alps (Switzerland), ranging from subgreenschist‐ to amphibolite‐facies conditions. Fluid compositions change from aqueous inclusions in subgreenschist‐ and greenschist‐facies rocks to aqueous–carbonic inclusions in amphibolite‐facies rocks. The fluid composition is constant for each vein, across several fluid inclusion generations that record the growth history of the quartz crystals. Chemical solute geothermometry, fluid inclusion isochores, and constraints from fluid–mineral equilibria modeling were used to reconstruct the pressure–temperature conditions of the Alpine fissure veins and to compare them with the metamorphic path of their host rocks. The data demonstrate that fluids in the Aar massif were trapped close to the metamorphic peak whereas the fluids in the Penninic nappes record early cooling, consistent with retrograde alteration. The good agreement between the fluid–mineral equilibria modeling and observed fluid compositions and host‐rock mineralogy suggests that the fluid inclusions were entrapped under rock‐buffered conditions. The molar Cl/Br ratios of the fluid inclusions are below the seawater value and would require unrealistically high degrees of evaporation and subsequent dilution if they were derived from seawater. The halogen data may thus be better explained by interaction between metamorphic fluids and organic matter or graphite in metasedimentary rocks. The volatile content (CO2, sulfur) in the fluid inclusions increases systematically as function of the metamorphic grade, suggesting that the fluids have been produced by prograde devolatilization reactions. Only the fluids in the highest grade rocks were partly modified by retrograde fluid–rock interactions, and all major element compositions reflect equilibration with the local host rocks during the earliest stages of postmetamorphic uplift.  相似文献   

12.
Hydrothermal polymetallic veins of the Gemeric unit of the Western Carpathians are oriented coherently with the foliation of their low‐grade Variscan basement host. Early siderite precipitated from homogeneous NaCl‐KCl‐CaCl2‐H2O brines with minor CO2, while immiscible gas–brine mixtures are indicative of the superimposed barite, quartz–tourmaline and quartz–sulphide stages. The high‐salinity aqueous fluid (18–35 wt%) found in all mineralization stages corresponds to formation water modified by interaction with crystalline basement rocks at temperatures between 140 and 300°C. High brominity (around 1000 ppm in average) resulted from evaporation and anhydrite precipitation in a Permo‐Triassic marine basin, and from secondary enrichment by dissolution of organic matter in the marine sediments at diagenetic temperatures. Sulphate depletion reflects thermogenic reduction during infiltration of the formation waters into the Variscan crystalline basement. Crystallization temperatures of the siderite fill (140–300°C) and oxygen isotope ratios of the parental fluids (4–10‰) increase towards the centre of the Gemeric cleavage fan, probably as a consequence of decreasing water/rock ratios in rock‐buffered hydrothermal systems operating during the initial stages of vein evolution. In contrast, buoyant gas–water mixtures, variable salinities and strongly fluctuating P–T parameters in the successive mineralization stages reflect transition from a closed to an open hydrothermal system and mixing of fluids from various sources. Depths of burial were 6–14 km (1.7–4.4 kbar, in a predominantly lithostatic fluid regime) during the siderite and barite sub‐stages of the north‐Gemeric veins, and up to 16 km (1.6–4.5 kbar, in a hydrostatic to lithostatic fluid regime) in the quartz–tourmaline stage of the south‐Gemeric veins. The fluid pressure decreased down to approximately 0.6 kbar during crystallization of sulphides. U‐Pb‐Th, 40Ar/39Ar and K/Ar geochronology applied to hydrothermal muscovite–phengite and monazite, as well as cleavage phyllosilicates in the adjacent basement rocks and deformed Permian conglomerates corroborated the opening of hydrothermal veins during Lower Cretaceous thrusting and their rejuvenation during Late Cretaceous sinistral transpressive shearing and extension.  相似文献   

13.
Quartz veins acted as impermeable barriers to regional fluid flow and not as fluid‐flow conduits in Mesoproterozoic rocks of the Mt Painter Block, South Australia. Systematically distributed asymmetric alteration selvedges consisting of a muscovite‐rich zone paired with a biotite‐rich zone are centered on quartz veins in quartz–muscovite–biotite schist. Geometric analysis of the orientation and facing of 126 veins at Nooldoonooldoona Waterhole reveals a single direction along which a maximum of all veins have a muscovite‐rich side, irrespective of their specific individual orientation. This direction represents a Mesoproterozoic fluid‐flow vector and the veins represent permeability barriers to the flow. The pale muscovite‐rich zones formed on the downstream side of the vein and the dark biotite‐rich zones mark the upstream side. The alteration couplets formed from mica schist at constant Zr, Ga, Sc, and involved increases in Si, Na, Al and decreases in K, Fe, Mg for pale alteration zones, and inverse alteration within dark zones. The asymmetry of the alteration couplets is best explained by the pressure dependence of mineral–fluid equilibria. These equilibria, in combination with a Darcian flow model for coupled advection and diffusion, and with permeability barriers imposed by the quartz veins, simulate the pattern of both fluid flow and differential, asymmetric metasomatism. The determined vector of fluid flow lies along the regional foliation and is consistent with the known distribution of regional alteration products. The presence of asymmetric alteration zones in rock containing abundant pre‐alteration veins suggests that vein‐rich material may have generally retarded regional fluid flow.  相似文献   

14.
Calcite veins at outcrop in the Mesozoic, oil‐bearing Wessex Basin, UK, have been studied using field characterization, petrography, fluid inclusions and stable isotopes to help address the extent, timing and spatial and stratigraphic variability of basin‐scale fluid flow. The absence of quartz shows that veins formed at low temperature without an influence of hydrothermal fluids. Carbon isotopes suggest that the majority of vein calcite was derived locally from the host rock but up to one quarter of the carbon in the vein calcite came from CO2 from petroleum source rocks. Veins become progressively enriched in source‐rock‐derived CO2 from the outer margin towards the middle, indicating a growing influence of external CO2. The carbon isotope data suggest large‐scale migration of substantial amounts of CO2 around the whole basin. Fluid inclusion salinity data and interpreted water‐δ18O data show that meteoric water penetrated deep into the western part of the basin after interacting with halite‐rich evaporites in the Triassic section before entering fractured Lower and Middle Jurassic rocks. This large‐scale meteoric invasion of the basin probably happened during early Cenozoic uplift. A similar approach was used to reveal that, in the eastern part of the basin close to the area that underwent most uplift, uppermost Jurassic and Cretaceous rocks underwent vein formation in the presence of marine connate water suggesting a closed system. Stratigraphically underlying Upper Jurassic mudstone and Lower Cretaceous sandstone, in the most uplifted part of the basin, contain veins that resulted from intermediate behaviour with input from saline meteoric water and marine connate waters. Thus, while source‐rock‐derived CO2 seems to have permeated the entire section, water movement has been more restricted. Oil‐filled inclusions in vein calcite have been found within dominant E‐W trending normal faults, suggesting that these may have facilitated oil migration.  相似文献   

15.
Structure‐ and tectonic‐related gas migration into Ordovician sandstone reservoirs and its impact on diagenesis history were reconstructed in two gas fields in the Sbaa Basin, in SW Algeria. This was accomplished by petrographical observations, fluid inclusion microthermometry and stable isotope geochemistry on quartz, dickite and carbonate cements and veins. Two successive phases of quartz cementation (CQ1 and CQ2) occurred in the reservoirs. Two phase aqueous inclusions show an increase in temperatures and salinities from the first CQ1 diagenetic phase toward CQ2 in both fields. Microthermometric data on gas inclusions in quartz veins reveal the presence of an average of 92 ± 5 mole% of CH4 considering a CH4‐CO2 system, which is similar to the present‐day gas composition in the reservoirs. The presence of primary methane inclusions in early quartz overgrowths and in quartz and calcite veins suggests that hydrocarbon migration into the reservoir occurred synchronically with early quartz cementation in the sandstones located near the contact with the Silurian gas source rock at 100–140°C during the Late Carboniferous period and the late Hercynian episode fracturing at temperatures between 117 and 185°C, which increased in the NW‐direction of the basin. During the fracture filling, three main types of fluids were identified with different salinities and formation temperatures. A supplementary phase of higher fluid temperature (up to 226°C) recorded in late quartz, and calcite veins is related to a Jurassic thermal event. The occurrence of dickite cements close to the Silurian base near the main fault areas in both fields is mainly correlated with the sandstones where the early gas was charged. It implies that dickite precipitation is related to acidic influx. Late carbonate cements and veins (calcite – siderite – ankerite and strontianite) occurred at the same depths resulting from the same groundwater precipitation. The absence of methane inclusions in calcite cements result from methane flushing by saline waters.  相似文献   

16.
Seven vein types are recognized in three continental Devonian molasse basins (the Hornelen, Kvamshesten and Solund basins) in western Norway. These include calcite‐, quartz‐ and epidote‐dominated veins. The salinities of fluid inclusions from quartz‐dominated veins in the Hornelen and Kvamshesten basins are close to or slightly higher than those for modern seawater, whereas the fluids from quartz‐ and calcite‐dominated veins in the Solund basin range from seawater values to 20 wt % NaCl equivalent. Minerals such as biotite, amphibole, titanite, chlorite and epidote are abundant in the latter veins, and are important constituents of the authigenic mineral assemblages. A combination of fluid inclusion and petrological data suggest that at least some of the veins formed at depths around 12–14 km. The Cl/Br ratios and the salinity of the fluid inclusions can be explained by interactions with evaporites, implying that the sedimentary environment forming the basin fill had the strongest influence upon low‐grade metamorphic fluid Cl and Br contents. Differences in the Cl/I and Na/Br ratios between the Solund basin and the Hornelen and Kvamshesten basins are best explained by local mass transfer between pore fluids and the surrounding rock matrix during burial and increasing temperatures.  相似文献   

17.
Petrography, Eh‐pH calculations and the stable isotope composition of oxygen are used to interpret geochemical processes that occurred during iron oxide mineralization and dolomitization along the Menuha Ridge segment of the Paran Fault, southern Israel, adjacent to the Dead Sea Transform (DST). Iron mineralization is strongly localized in the fault zone as ferruginous lenses, whereas Fe dolomitization spreads laterally into the Cenomanian‐Turonian carbonate host rock as stratabound beds. The average oxygen isotope fractionation between syngenetic quartz and iron oxides in the ferruginous lenses gives a temperature of 50 ± 10°C and δ18O SMOW water = ?3.5‰; consistent with an origin from metalliferous groundwater flow in the sedimentary basin. Ferroan dolomite initially formed under strongly reducing conditions, but this was followed by oxidation and pseudomorphic replacement of the dolomite by a mesh of fine‐grained iron oxides (simple zoned dolomites). This cycle of ferroan dolomite formation and replacement by iron oxides was repeated in complex zoned dolomites. Dolomite oxygen isotope compositions fall into two groups: a high δ18O group corresponding to the simple zoned dolomites and non‐ferroan dolomites and a low δ18O group corresponding to the complex zoned dolomites. Water‐rock calculations suggest that the epignetic dolomites formed under fluid‐buffered conditions: the high δ18O group are indicated to have formed at temperatures of ca. 25°C for waters with δ18O = ?4 to 0‰; the low δ18O complex zoned dolomites at 50–75°C for waters with the same isotopic composition. A kinetic calculation for a complex zoned dolomite‐bearing bed indicates that dolomitization must have occurred at high values of the dolomite saturation index. This requirement for high Mg supersaturation and the indication that epigenetic dolomitization is more protracted in stratigraphically deeper formations located closer to the DST is consistent with models proposing that Mg‐rich solutions originated in the Dead Sea Rift.  相似文献   

18.
Highly saline, deep‐seated basement brines are of major importance for ore‐forming processes, but their genesis is controversial. Based on studies of fluid inclusions from hydrothermal veins of various ages, we reconstruct the temporal evolution of continental basement fluids from the Variscan Schwarzwald (Germany). During the Carboniferous (vein type i), quartz–tourmaline veins precipitated from low‐salinity (<4.5wt% NaCl + CaCl2), high‐temperature (≤390°C) H2O‐NaCl‐(CO2‐CH4) fluids with Cl/Br mass ratios = 50–146. In the Permian (vein type ii), cooling of H2O‐NaCl‐(KCl‐CaCl2) metamorphic fluids (T ≤ 310°C, 2–4.5wt% NaCl + CaCl2, Cl/Br mass ratios = 90) leads to the precipitation of quartz‐Sb‐Au veins. Around the Triassic–Jurassic boundary (vein type iii), quartz–haematite veins formed from two distinct fluids: a low‐salinity fluid (similar to (ii)) and a high‐salinity fluid (T = 100–320°C, >20wt% NaCl + CaCl2, Cl/Br mass ratios = 60–110). Both fluids types were present during vein formation but did not mix with each other (because of hydrogeological reasons). Jurassic–Cretaceous veins (vein type iv) record fluid mixing between an older bittern brine (Cl/Br mass ratios ~80) and a younger halite dissolution brine (Cl/Br mass ratios >1000) of similar salinity, resulting in a mixed H2O‐NaCl‐CaCl2 brine (50–140°C, 23–26wt% NaCl + CaCl2, Cl/Br mass ratios = 80–520). During post‐Cretaceous times (vein type v), the opening of the Upper Rhine Graben and the concomitant juxtaposition of various aquifers, which enabled mixing of high‐ and low‐salinity fluids and resulted in vein formation (multicomponent fluid H2O‐NaCl‐CaCl2‐(SO4‐HCO3), 70–190°C, 5–25wt% NaCl‐CaCl2 and Cl/Br mass ratios = 2–140). The first occurrence of highly saline brines is recorded in veins that formed shortly after deposition of halite in the Muschelkalk Ocean above the basement, suggesting an external source of the brine's salinity. Hence, today's brines in the European basement probably developed from inherited evaporitic bittern brines. These were afterwards extensively modified by fluid–rock interaction on their migration paths through the crystalline basement and later by mixing with younger meteoric fluids and halite dissolution brines.  相似文献   

19.
Y. Song  Z. Hou  Y. Cheng  T. Yang  C. Xue 《Geofluids》2016,16(1):56-77
Extensive quartz–carbonate–Cu sulfide veins occur in clastic rocks and are spatially related to Paleocene granites in the western border of the Lanping Basin, western Yunnan, China. Abundant aqueous‐carbonic fluid inclusions occur in these veins but their origin is debated. In the Jinman–Liancheng deposit, individual primary inclusion groups contain either exclusively liquid‐rich inclusions (Gl), or coexisting liquid‐rich and vapor‐rich inclusions (Glv). Microthermometry and estimate of CO2 content indicate that type Gl inclusions either have homogenization temperatures (Th) 238–263°C and contain c. 3.9–5.5 mole % CO2, or have Th 178–222°C and contain c. 1.6–3.2 mole % CO2. Type Glv inclusions are thought to represent samples of fluid unmixing that occurred at 183–218°C. At that time, the liquid phase in the unmixing fluid may contain c. 2.0–3.3 mole % CO2. As such, the correlation of CO2 content with Th for type Gl inclusions is thought to be caused by fluid unmixing with decreasing temperature and subsequent CO2 escape. δ18O and δD values of the parent water mainly fall in the field below that of primary magmatic water, indicative of fluid derivation from degassed (in open system) magmatic water, with no contributions from basinal or meteoric water. Initial Sr isotopic compositions of hydrothermal carbonates suggest that the fluid was magmatic, probably derived from the Paleogene granites. δ13CPDB values (?4‰ to ?7‰) of the hydrothermal carbonates and δ34SVCDT values of sulfides (mainly ?11‰ to +5‰) indicate that the carbon and sulfur can be derived from (degassed) magma and/or nonmagmatic sources. The CO2‐rich and magmatic‐water‐derived fluid at Jinman–Liancheng differs from the CO2‐poor and basinally derived fluid in sediment‐hosted stratiform Cu (SSC) deposits, which suggests that there are no genetic linkages between the vein Cu and SSC deposits in the Lanping Basin.  相似文献   

20.
Y. LIU  G. CHI  K. M. BETHUNE  B. DUBÉ 《Geofluids》2011,11(3):260-279
The Red Lake mine trend, a deformation zone in the Archean Red Lake greenstone belt that hosts the world‐class Campbell‐Red Lake gold deposit, is characterized by abundant foliation‐parallel iron‐carbonate ± quartz veins with banded colloform‐crustiform structures and cockade breccias overprinted by silicification and gold mineralization. There is an apparent incompatibility between the cavity‐fill structures of the veins and breccias (typically developed at shallow crustal depths) and the upper greenschist to lower amphibole facies metamorphic conditions recorded in the host rocks (indicating relatively deep environments). This, together with the development of veins along the foliation plane, represents an enigmatic problem that may be related to the interplay between fluid dynamics and stress field. We approach this problem through systematic study of fluid inclusion planes (FIPs) in the vein minerals, including the orientations of the FIPs and the pressure–temperature conditions inferred from fluid inclusion microthermometry. We find that fluid inclusions in the main stage vein minerals (pregold mineralization ankerite and quartz and syn‐ore quartz) are predominantly carbonic without a visible aqueous phase, whereas many inclusions in the postore stage contain an aqueous phase. Most FIPs are subvertical, and many are subparallel to the foliation. High fluid pressure coupled with the high wetting angles of the water‐poor, carbonic fluids may have been responsible for the abundance of brittle deformation features. The development of subvertical FIPs is interpreted to indicate episodic switching of the maximum principal compressive stress (σ1) from subhorizontal (perpendicular to the foliation) to subvertical (parallel to the foliation) orientation. The subvertical σ1 is favorable for the formation of foliation‐parallel veins, as fractures are preferentially opened along the foliation in such a stress regime, the origin of which may be linked to the fluid source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号