首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Binfield, P., Archer, M., Hand, S.J., Black, K.H., Myers, T.J., Gillespie, A.K. & Arena, D.A., June 2016. A new Miocene carnivorous marsupial, Barinya kutjamarpensis (Dasyuromorphia), from central Australia. Alcheringa 41, xx–xx. ISSN 0311-5518.

A new dasyuromorphian, Barinya kutjamarpensis sp. nov., is described on the basis of a partial dentary recovered from the Miocene Wipajiri Formation of northern South Australia. Although about the same size as the only other species of this genus, B. wangala from the Miocene faunal assemblages of the Riversleigh World Heritage Area, northwestern Queensland, it has significant differences in morphology including a very reduced talonid on M4 and proportionately wider molars. Based on the structural differences and the more extensive wear on its teeth, the central Australian species might have consumed harder or more abrasive prey in a more silt-rich environment than its congener, which hunted in the wet early to middle Miocene forests of Riversleigh.

Pippa Binfield [], Michael Archer [], Suzanne J. Hand [], Karen H. Black [], Troy J. Myers [] Anna K. Gillespie [] and Derrick A. Arena [], PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales 2052, Sydney, Australia.  相似文献   


2.
Zhang, Y., He, W.H., Shi, G.R., Zhang, K.X. & Wu, H.T., 26.2.2015. A new Changhsingian (Late Permian) brachiopod fauna from the Zhongzhai section (South China) Part 3: Productida. Alcheringa 39, xxx–xxx. ISSN 0311-5518.

As the third and last part of a systematic palaeontological study of the brachiopod fauna from the Permian–Triassic boundary section at Zhongzhai in Guizhou Province (South China), this paper reports 15 species (including three new species: Tethyochonetes minor sp. nov., Neochonetes (Zhongyingia) transversa sp. nov., Paryphella acutula sp. nov.) in Order Productida. In addition, the morphological features and definitions of several key Changhsingian brachiopod taxa (e.g., Paryphella and Oldhamina interrupta) are clarified and revised.

Yang Zhang* [] and G.R. Shi [], School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia; Weihong He [] and Kexin Zhang [], State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Huiting Wu [], Faculty of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China. *Also affiliated with: Faculty of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China.  相似文献   

3.
Meor, H.A.H., Yong, A.M., Zakaria, M.Z.Z. & Ghani, A.A., 2.6.2015. First record of Homoctenus (Tentaculitoidea, Homoctenida) from the Late Devonian of northwest Peninsular Malaysia. Alcheringa 39, 550–558. ISSN 0311-5518.

The homoctenid tentaculitoid genus Homoctenus is reported for the first time from Peninsular Malaysia. The fossils derive from the Upper Devonian Sanai Limestone, exposed in the state of Perlis, northwest Peninsular Malaysia. The fossils are closely related to Homoctenus tenuicinctus tenuicinctus and are described as Homoctenus sp. cf. H. tenuicinctus. The homoctenids were recovered from an interval containing a rich conodont assemblage, indicating a Frasnian age (Palmatolepis linguiformis Zone).

Meor Hakif Amir Hassan [], Yong Adilah Mustafa [], Mohamad Z.Z. Zakaria [], Azman A. Ghani [], Geology Department, University of Malaya, 50603 Kuala Lumpur, Malaysia. Received 12.4.2015; revised 27.5.2015; accepted 2.6.2015.  相似文献   

4.
Yang, T.L., He, W.H., Zhang, K.X., Wu, S.B., Zhang, Y., Yue, M.L., Wu, H.T. & Xiao, Y.F., November 2015. Palaeoecological insights into the Changhsingian–Induan (latest Permian–earliest Triassic) bivalve fauna at Dongpan, southern Guangxi, South China. Alcheringa 40, xxx–xxx. ISSN 0311-5518.

The Talung Formation (latest Permian) and basal part of Luolou Formation (earliest Triassic) of the Dongpan section have yielded 30 bivalve species in 17 genera. Eight genera incorporating 11 species are systematically described herein, including three new species: Nuculopsis guangxiensis, Parallelodon changhsingensis and Palaeolima fangi. Two assemblages are recognized, i.e., the Hunanopecten exilisEuchondria fusuiensis assemblage from the Talung Formation and the Claraia dieneri–Claraia griesbachi assemblage from the Luolou Formation. The former is characterized by abundant Euchondria fusuiensis, an endemic species, associated with other common genera, such as Hunanopecten, which make it unique from coeval assemblages of South China. A palaeoecological analysis indicates that the Changhsingian bivalve assemblage at Dongpan is diverse and represented by various life habits characteristic of a complex ecosystem. This also suggests that redox conditions were oxic to suboxic in deep marine environments of the southernmost Yangtze Basin during the late Changhsingian, although several episodes of anoxic perturbations and declines in palaeoproductivity saw deterioratation of local habitats and altered the taxonomic composition or population size of the bivalve fauna.

Tinglu Yang [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Weihong He* [] and Kexin Zhang [], State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China; Shunbao Wu [], Yang Zhang [], Mingliang Yue [], Huiting Wu [] and Yifan Xiao [], School of Earth Sciences, China University of Geosciences, 388 Lumo Road, Hongshan, Wuhan 430074, PR China.  相似文献   


5.
Taboada, A.C., Mory, A.J., Shi, G.R., Haig, D.W. & Pinilla, M.K., 12.11.2014. An Early Permian brachiopod–gastropod fauna from the Calytrix Formation, Barbwire Terrace, Canning Basin, Western Australia. Alcheringa 39, xxx–xxx. ISSN 0311-5518

A small brachiopod–gastropod fauna from a core close to the base of the Calytrix Formation within the Grant Group includes the brachiopods Altiplecus decipiens (Hosking), Myodelthyrium dickinsi (Thomas), Brachythyrinella narsarhensis (Reed), Neochonetes (Sommeriella) obrieni Archbold, Tivertonia barbwirensis sp. nov. and the gastropod Peruvispira canningensis sp. nov. The fauna has affinities with that of the late Sakmarian?early Artinskian Nura Nura Member directly overlying the Grant Group in other parts of the basin but, as with all lower Cisuralian (and Pennsylvanian) glacial strata in Western Australia, its precise age remains poorly constrained, especially in terms of correlation to international stages. Although the Calytrix fauna lies within the Pseudoreticulatispora confluens Palynozone, the only real constraint on its age (and that of the associated glacially influenced strata) is from Sakmarian (Sterlitamakian) and stratigraphically younger faunas. A brief review of radiometric ages from correlative strata elsewhere in Gondwana shows that those ages need to be updated. The presence of Asselian strata and the position of the Carboniferous?Permian boundary remain unclear in Western Australia.

Arturo César Taboada [], CONICET-Laboratorio de Investigaciones en Evolución y Biodiversidad (LIEB), Facultad de Ciencias Naturales, Sede Esquel, Universidad Nacional de la Patagonia ‘San Juan Bosco’, Edificio de Aulas, Ruta Nacional 259, km. 16,5, Esquel U9200, Chubut, Argentina; Arthur Mory [], Geological Survey of Western Australia, 100 Plain Street, East Perth, WA 6004, School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; Guang R. Shi [], School of Life and Environmental Sciences, Deakin University, Melbourne Burwood Campus, 221 Burwood Highway, Burwood, Victoria 3125, Australia; David W. Haig [], School of Earth and Environment (M004), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; María Karina Pinilla [], División Paleozoología Invertebrados, Museo de Ciencias Naturales de La Plata, Paseo del Bosque s/n, 1900 La Plata, Buenos Aires, Argentina.  相似文献   

6.
Camilleri, T.A., Warne, M.T., Holloway, D.J. & Weldon, E.A., 10 May 2019. Revision of the ostracod genus Velibeyrichia Henningsmoen, 1954 from the Silurian and Lower Devonian of North America. Alcheringa XXX, X–X. ISSN 0311-5518.

Known occurrences of the ostracod genus Velibeyrichia are restricted to a number of Silurian to Lower Devonian geological strata in North America: the McKenzie Member of the Mifflintown Formation of Maryland and West Virginia; the Tonoloway Limestone of Maryland, West Virginia, Virginia and Pennsylvania; the Bloomsburg Formation of Maryland, Virginia and Pennsylvania; the Manlius Limestone of New York; and the Decker Limestone of New Jersey and New York. The genus includes six species: V. moodeyi (type species), V. mesleri, V. paucigranulosa, V. reticulosaccula, V. tonolowayensis and V. tricornia. The diagnostic combination of characters for this genus are: distinct deflection of the velum where it crosses the crumina in heteromorphs (adult female specimens), dorsal nodes on lobes L1 and L3, sexual dimorphism of the velum, and in tecnomorph specimens, either a shallow sulcus on lobe L3 or a zygal ridge (in adult tecnomorph specimens) extending from lobe L2 to lobe L3. The presence of one or the other of the latter two characters defines two distinct species groups.

Tamara T.A. Camilleri* [], Mark T. Warne* [] and Elizabeth A. Weldon [], Deakin University, Geelong, School of Life and Environmental Sciences & Centre for Integrative Ecology (Melbourne Campus), 221 Burwood Highway, Burwood, Victoria 3125, Australia; David J. Holloway [], Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia. *Also affiliated with: Museums Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia.  相似文献   

7.
Zheng, D., Wang, H., Nel, A., Dou, L., Dai, Z., Wang, B. & Zhang, H. 27 June 2019. A new damsel-dragonfly (Odonata: Anisozygoptera: Campterophlebiidae) from the earliest Jurassic of the Junggar Basin, northwestern China. Alcheringa XX, X–X. ISSN 0311-5518.

A new genus and species of campterophlebiid damsel-dragonfly, Jurassophlebia xinjiangensis gen. et sp. nov., is described from the Lower Jurassic Badaowan Formation in the Junggar Basin, northwestern China. Jurassophlebia differs from all other campterophlebiid genera in having PsA in the same orientation as the distal branch of AA, and in its uniquely open subdiscoidal cell with very acute apical angle in the hind wing. The new discovery adds to the Asian diversity of damsel-dragonflies in the earliest Jurassic.

Daran Zheng* [], He Wang [], Bo Wang [], and Haichun Zhang [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China; André Nel [], Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France; Longhui Dou [], Comprehensive Geology Exploration Team, Xinjiang Coalfield Geology Bureau, West Mountain Road, Ürümqi 830000, PR China; Zhenlong Dai [], No.9 Geological Team, Xinjiang Bureau of Geology and Mineral Resources, Ürümqi 830011, PR China; Daran Zheng also affiliated with Department of Earth Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.  相似文献   

8.
Vickers-Rich, P., Soleimani, S., Farjandi, F., Zand, M., Linnemann, U., Hofmann, M., Wilson, S.A., Cas, R. &; Rich, T.H. November, 2017. A preliminary report on new Ediacaran fossils from Iran. Alcheringa 42, 231–244. ISSN 0311-5518.

Recent exploratory field mapping of marine sedimentary sequences in the Koushk Mine locality of the Bafq region in Central Iran, and on the northern slopes of the Elborz Mountains south of the Caspian Sea, has yielded large complex body and trace fossils of Neoproterozoic–early Cambrian age. The recovered specimens resemble the previously documented Precambrian discoidal form Persimedusites, and a the tubular morphotype Corumbella, which is a novel occurrence for Iran and otherwise only recorded before from Brazil and the western USA. Additional enigmatic traces can not yet be interpreted unequivocally, but suggest that future work may uncover more unusual Ediacaran fossils from various localities in Central Iran.

Patricia Vickers-Rich* [, ], Faculty of Science, Swinburne University of Technology, Melbourne (Hawthorn), Victoria 3122, Australia; Sara Soleimani [], Palaeontology Department, Geological Survey of Iran, Tehran, Iran; Farnoosh Farjandi [], Department of Geochemical Exploration, Geological Survey of Iran, Tehran, Iran; Mehdi Zand [], Geology Department, Bafq Mining Company, Koushk Mine, Yazd, Iran. Ulf Linnemann [], and Mandy Hofmann [], Senckenberg Naturhistorische Sammlungen, Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, Koenigsbruecker Landstrasse 159, D-01109, Dresden, Germany; Siobhan A. Wilson [], School of Earth, Atmosphere and Environment, Monash University, Melbourne (Clayton), Victoria 3800, Australia; Raymond Cas [], School of Earth, Atmosphere and Environment, Monash University, Melbourne (Clayton), Victoria 3800, Australia; Thomas H. Rich? [], Museum Victoria, Exhibition Gardens, PO Box 666, Melbourne, Victoria, 3001 Australia. *Also affiliated with: School of Earth, Atmosphere and Environment, Monash University, Melbourne (Clayton), Victoria 3800, Australia; School of Environmental Sciences, Deakin University, Melbourne (Burwood), Victoria, Australia 3125; Palaeontology Department, Museum Victoria, Carlton Gardens, PO Box 666, Melbourne, Victoria 3001, Australia. ?Also affiliated with: School of Earth, Atmosphere and Environment, Monash University, Melbourne (Clayton), Victoria 3800, Australia; Faculty of Science, Swinburne University of Science and Technology, Melbourne (Hawthorn), Victoria 3122, Australia.  相似文献   

9.
Liu, Q., Zhang, H.C., Wang, B., Fang, Y., Zheng, D.R., Zhang, Q. & Jarzembowski, E.A., 2014. A new saucrosmylid lacewing (Insecta, Neuroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China. Alcheringa 38. ISSN 0311-5518.

A new genus and new species of Saucrosmylidae (Insecta, Neuroptera) are described (Daohugosmylus castus) based on a well-preserved hindwing from the Middle Jurassic of Daohugou, Inner Mongolia, China. Daohugosmylus gen. nov. is distinguished by a large and nearly semi-circular hindwing, relatively wide R1 space possessing several rows of cells, anteriorly bent Rs, dense crossveins over the entire wing, and smooth outer margin.

Qing Liu (corresponding author) [], Haichun Zhang [], Bo Wang [], Yan Fang [], Daran Zheng [], Qi Zhang [] and Edmund A Jarzembowski [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, PR China; secondary address of Daran Zheng & Qi Zhang, University of Chinese Academy of Sciences, Beijing, 100049, PR China; and Ed Jarzembowski, Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK. Received 13.11.2013; revised 20.1.2014; accepted 21.1.2014.  相似文献   

10.
Wainman, C.C., Hannaford, C., Mantle, D. & McCabe, P.J., April.2018. Utilizing U–Pb CA-TIMS dating to calibrate the Middle to Late Jurassic spore-pollen zonation of the Surat Basin, Australia to the geological time-scale. Alcheringa XX, xx-xx.

Spore-pollen palynostratigraphy is commonly used to subdivide and correlate Jurassic continental successions in eastern Australia and thus aid the construction of geological models for the petroleum and coal industries. However, the current spore-pollen framework has only been tenuously calibrated to the geological time-scale. Age determinations are reliant on indirect correlations of ammonite and dinoflagellate assemblages from New Zealand, the North West Shelf of Australia and Southeast Asia to the standard European stages. New uranium-lead chemical abrasion thermal ionization mass spectrometry (U–Pb CA-TIMS) dates from 19 tuff beds in the Middle–Upper Jurassic Injune Creek Group of the Surat Basin enables regional spore-pollen palynostratigraphic zones to be precisely dated for the first time. These results show the base of the APJ4.2 and APJ4.3 subzones are similar in age to previous estimates (Middle Jurassic, Bathonian) from indirect palynostratigraphic correlation. However, the base of the APJ5 Zone and the APJ6.1 Subzone may be somewhat younger than previously estimated, possibly by as much as 2.5 and 4.2 Myrs, respectively. The continued utilization of U–Pb CA-TIMS dates will further refine the absolute ages of these zones, improve the inter- and intra-basinal correlation of Middle–Upper Jurassic strata in eastern Australian basins and greatly enhance intercontinental correlations.

Carmine Christopher Wainman [] and Peter James McCabe [] Australian School of Petroleum, University of Adelaide, SA, 5005, Australia; Carey Hannaford [] and Daniel Mantle [] MGPalaeo Pty Ltd, 5 Arvida Street, Malaga, WA, 6090, WA, Australia.  相似文献   

11.
Tineo, D.E., Bona, P., Pérez, L.M., Vergani, G.D., González, G., Poiré, D.G., Gasparini, Z.N. & Legarreta, P., 1.10.2014. Palaeoenvironmental implications of the giant crocodylian Mourasuchus (Alligatoridae, Caimaninae) in the Yecua Formation (late Miocene) of Bolivia. Alcheringa 39, xxx–xxx. ISSN 0311-5518

Outcrops of the Yecua Formation (late Miocene) are exposed for approximately 230 m along the La Angostura section of the Piraí River (50 km southwest of Santa Cruz de la Sierra). These reveal massive (argillic palaeosols) and laminated (quiet-water lacustrine and marsh settings) mudstones interbedded with thin sandstones containing microfossils, molluscs and vertebrate remains. Significantly, the succession hosts a giant crocodylian, Mourasuchus (Alligatoridae, Caimaninae), which is represented by both skull and postcranial fragments found in association with freshwater turtles and fishes. Mourasuchus was distributed widely from the middle Miocene of Colombia to upper Miocene of Venezuela, Brazil and Argentina, suggesting connections between major fluvial systems and an active mechanism for dispersal of South American freshwater vertebrates during the Miocene.

David Eric Tineo [] and Daniel Gustavo Poiré [], CONICET—Centro de Investigaciones Geológicas, Universidad Nacional de La Plata. Calle 1 (644), B1900FWA, La Plata, Argentina; Paula Bona [] and Zulma Gasparini [], CONICET—División Paleontología Vertebrados, Museo de La Plata. Paseo del Bosque s/n, B1900FWA, La Plata, Argentina; Leandro Martín Pérez [] CONICET—División Paleozoología Invertebrados, Museo de La Plata. Paseo del Bosque s/n, B1900FWA, La Plata, Argentina; Gustavo Dardo Vergani []Pluspetrol S.A. Lima (339), C1073AAG, Ciudad Autónoma de Buenos Aires, Argentina; Gloria González Rigas []Pluspetrol Bolivia Corporation SA, Av. Grigotá esq. Las Palmas, Santa Cruz de la Sierra, Bolivia; Pablo Legarreta []—Pluspetrol S.A. Lima (339), C1073AAG, Ciudad Autónoma de Buenos Aires, Argentina.  相似文献   

12.
Khan, M.A., Babar, M.A., Akhtar, M., Iliopoulos, G., Rakha, A. & Noor, T., November 2015. Gazella (Bovidae, Ruminantia) remains from the Siwalik Group of Pakistan. Alcheringa 40, xxx–xxx. ISSN 0311-5518.

New gazelle fossils are described from the Siwalik Group of Pakistan. The material includes horncores, maxilla and mandible fragments, and isolated teeth. The available samples are assigned to three Gazella species: Gazella sp. in the Lower Siwalik Subgroup (ca 14.2–11.2 Ma), and G. lydekkeri and G. superba in the Middle Siwalik Subgroup (ca 10.2–3.4 Ma). Based on a review of the Siwalik Group gazelles, G. padriensis is synonymized with G. lydekkeri. Gazella superba Pilgrim, 1939 sensu stricto is a large form and is a valid species of the genus in the Siwalik Group.

Muhammad Akbar Khan [], Muhammad Adeeb Babar [], Muhammad Akhtar [], Allah Rakha [], Tuba Noor [], Abu Bakr Fossil Display & Research Centre, Department of Zoology, Quid-e-Azam Campus, Punjab University (54590), Lahore, Pakistan; George Iliopoulos [], Geology Department of the University of Patras, Patras, Greece.  相似文献   


13.
Wang, H., Li, S., Zhang, Q., Fang, Y., Wang, B. & Zhang, H., 13.02.2015. A new species of Aboilus (Insecta, Orthoptera) from the Jurassic Daohugou beds of China, and discussion of forewing coloration in Aboilus. Alcheringa 39, xxx–xxx. ISSN 0311-5518

He Wang* [], Sha Li* [], Qi Zhang* [], Yan Fang [], Bo Wang? [] and Haichun Zhang [], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China.*Also affiliated with University of Chinese Academy of Sciences, Beijing 100049, PR China. ?Also affiliated with Steinmann Institute, University of Bonn, Bonn 53115, Germany.

A new species of Aboilinae (Orthoptera: Prophalangopsidae), Aboilus perbellus, is described and illustrated based on three well-preserved forewings recovered from the Middle–Upper Jurassic Daohugou beds of Inner Mongolia, China. The new species differs from all congeneric forms in its special forewing coloration and features of its wing venation. To date, three types of forewing coloration have been found among different species of Aboilus at Daohugou, suggesting that these taxa inhabited different ecotopes.  相似文献   

14.
Poropat, S.F., Martin, S.K., Tosolini, A.-M.P., Wagstaff, B.E, Bean, L.B., Kear, B.P., Vickers-Rich, P. &; Rich, T.H., May 2018. Early Cretaceous polar biotas of Victoria, southeastern Australia—an overview of research to date. Alcheringa 42, 158–230. ISSN 0311-5518.

Although Cretaceous fossils (coal excluded) from Victoria, Australia, were first reported in the 1850s, it was not until the 1950s that detailed studies of these fossils were undertaken. Numerous fossil localities have been identified in Victoria since the 1960s, including the Koonwarra Fossil Bed (Strzelecki Group) near Leongatha, the Dinosaur Cove and Eric the Red West sites (Otway Group) at Cape Otway, and the Flat Rocks site (Strzelecki Group) near Cape Paterson. Systematic exploration over the past five decades has resulted in the collection of thousands of fossils representing various plants, invertebrates and vertebrates. Some of the best-preserved and most diverse Hauterivian–Barremian floral assemblages in Australia derive from outcrops of the lower Strzelecki Group in the Gippsland Basin. The slightly younger Koonwarra Fossil Bed (Aptian) is a Konservat-Lagerstätte that also preserves abundant plants, including one of the oldest known flowers. In addition, insects, crustaceans (including the only syncaridans known from Australia between the Triassic and the present), arachnids (including Australia’s only known opilione), the stratigraphically youngest xiphosurans from Australia, bryozoans, unionoid molluscs and a rich assemblage of actinopterygian fish are known from the Koonwarra Fossil Bed. The oldest known—and only Mesozoic—fossil feathers from the Australian continent constitute the only evidence for tetrapods at Koonwarra. By contrast, the Barremian–Aptian-aged deposits at the Flat Rocks site, and the Aptian–Albian-aged strata at the Dinosaur Cove and Eric the Red West sites, are all dominated by tetrapod fossils, with actinopterygians and dipnoans relatively rare. Small ornithopod (=basal neornithischian) dinosaurs are numerically common, known from four partial skeletons and a multitude of isolated bones. Aquatic meiolaniform turtles constitute another prominent faunal element, represented by numerous isolated bones and articulated carapaces and plastrons. More than 50 specimens—mostly lower jaws—evince a high diversity of mammals, including monotremes, a multituberculate and several enigmatic ausktribosphenids. Relatively minor components of these fossil assemblages are diverse theropods (including birds), rare ankylosaurs and ceratopsians, pterosaurs, non-marine plesiosaurs and a lepidosaur. In the older strata of the upper Strzelecki Group, temnospondyl amphibians—the youngest known worldwide—are a conspicuous component of the fauna, whereas crocodylomorphs appear to be present only in up-sequence deposits of the Otway Group. Invertebrates are uncommon, although decapod crustaceans and unionoid bivalves have been described. Collectively, the Early Cretaceous biota of Victoria provides insights into a unique Mesozoic high-latitude palaeoenvironment and elucidates both palaeoclimatic and palaeobiogeographic changes throughout more than 25 million years of geological time.

Stephen F. Poropat*? [; ], Faculty of Science, Engineering and Technology, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia; Sarah K. Martin*? [; ] Geological Survey of Western Australia, 100 Plain St, East Perth, Western Australia 6004, Australia; Anne-Marie P. Tosolini [] and Barbara E. Wagstaff [] School of Earth Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia; Lynne B. Bean [] Research School of Earth Sciences, Australian National University, Acton, Canberra, Australian Capital Territory 2001, Australia; Benjamin P. Kear [] Museum of Evolution, Uppsala University, Norbyvägen 16, Uppsala SE-752 36, Sweden; Patricia Vickers-Rich§ [; ] Faculty of Science, Engineering and Technology, Swinburne University of Technology, John St, Hawthorn, Victoria 3122, Australia; Thomas H. Rich [] Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia. *These authors contributed equally to this work. ?Also affiliated with: Australian Age of Dinosaurs Museum of Natural History, Lot 1 Dinosaur Drive, PO Box 408, Winton, Queensland 4735, Australia. ?Also affiliated with: Earth and Planetary Sciences, Western Australian Museum, Welshpool, Western Australia 6101, Australia. §Also affiliated with: School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria 3800, Australia.  相似文献   

15.
Nel, A., Frese, M., McLean, G. & Beattie R., May 2017. A forewing of the Jurassic dragonfly Austroprotolindenia jurassica from the Talbragar Fish Bed, New South Wales, Australia. Alcheringa 41, 532–535. ISSN 0311-5518.

The discovery of a well-preserved dragonfly forewing in the Upper Jurassic Talbragar Fish Bed near Gulgong and attributed to Austroprotolindenia jurassica Beattie & Nel allows this taxon to be placed in Protolindeniidae. It extends the palaeogeographical distribution of this family, previously known only from the Jurassic of Europe, to Australia.

André Nel [], CNRS UMR 7205, CP 50, Entomologie, Muséum National d’Histoire Naturelle, 45 rue Buffon, F-75005, Paris, France; Michael Frese [], University of Canberra, Institute for Applied Ecology and Faculty of Education, Science, Technology and Mathematics, Bruce, ACT 2601, Australia; Graham McLean [], The Australian Museum, 1 William St., Sydney, NSW 2010, Australia; Robert Beattie [], The Australian Museum, 1 William St., Sydney, NSW 2010, Australia.  相似文献   


16.
17.
Coutts, F.J., Gehling, J.G. & García-Bellido, D.C., August 2016. How diverse were early animal communities? An example from Ediacara Conservation Park, Flinders Ranges, South Australia. Alcheringa 40, xxx–xxx. ISSN 0311-5518

Fossils of the Ediacara biota record the earliest evidence of animal communities and, as such, provide an invaluable glimpse into the abiotic and biotic processes that helped shape the evolution of complex life on Earth. A diverse community of Ediacaran macro-organisms is preserved with high resolution in a fossil bed recently excavated from north Ediacara Conservation Park (NECP) in the Flinders Ranges, South Australia. Many of the commonly described Ediacaran taxa from the Flinders Ranges are represented on the bed surface and include: Parvancorina, Rugoconites, Spriggina, Dickinsonia, Tribrachidium, Kimberella, Charniodiscus and Yorgia, including two new taxa. Numerous additional fossil-bed fragments from the same locality were analysed that preserve a similar suite of taxa and shared sedimentology. On all surfaces, preserved microbial mat appeared complex, both in topography and in texture, and the unique combination of fine grainsize, high diversity and trace fossils provide insights into the palaeoecology of the ancient organisms that lived during the Ediacaran Period some 550 Ma. Several trace fossils are overlapped by body fossils, indicative of successive events, and complex organismal behaviour. The complexity of this fossil surface suggests that the primordial community was relatively mature and possibly at late-stage succession.

Felicity J Coutts [], School of Biological Sciences, University of Adelaide, Adelaide 5000, South Australia, Australia. James G Gehling [], South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia. Diego C. García-Bellido [], South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia.  相似文献   

18.
Chamberlain, P.M., Travouillon, K.J., Archer, M. & Hand, S.J., November 2015. Kutjamarcoot brevirostrum gen. et sp. nov., a new short-snouted, early Miocene bandicoot (Marsupialia: Peramelemorphia) from the Kutjamarpu Local Fauna (Wipajiri Formation) in South Australia. Alcheringa 40, XX–XX. ISSN 0311-5518.

A new bandicoot species, Kutjamarcoot brevirostrum gen. et sp. nov. (Peramelemorphia), is described here from the Leaf Locality, Kutjamarpu Local Fauna (LF), Wipajiri Formation (South Australia). The age of the fossil deposit is interpreted as early Miocene on the basis of biocorrelation between multiple species in the Kutjamarpu LF and local faunas from the Riversleigh World Heritage Area (WHA). Kutjamarcoot brevirostrum is represented by isolated teeth and three partial dentaries and appears to have been short-snouted with an estimated mass of 920 g. Phylogenetic analyses place K. brevirostrum in a clade with extant Australian bandicoots and the extinct Madju, but potentially exclude the extant New Guinean bandicoots. Morphometric analysis infers close similarity between K. brevirostrum and species of Galadi in both size and rostral length. They, thus, potentially occupied compatible ecological niches with competitive exclusion perhaps explaining geographical segregation between these broadly coeval lineages.

Philippa M. Chamberlain [], School of Earth Sciences, University of Queensland, St Lucia, Queensland 4072, Australia; Kenny J. Travouillon [; ], Western Australian Museum, Locked Bag 49, Welshpool DC, WA, 6986, and School of Earth Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia; Michael Archer [] and Suzanne J. Hand [], School of Biological, Earth and Environmental Sciences, University of New South Wales, New South Wales, 2052, Australia.  相似文献   


19.
Liu, X., Qiao, G.X., Yao, Y. & Ren, D., 28 March 2019. A new species of the aphid family Burmitaphididae (Hemiptera: Sternorrhyncha: Aphidomorpha) from Upper Cretaceous Burmese amber. Alcheringa 43, 455–460. ISSN 0311-5518

A new species of extinct aphids is reported based on a fossil specimen with a relatively complete body and broken wings from Upper Cretaceous Burmese amber. Vasteantenatus reliquialaus sp. nov. (Hemiptera: Aphidomorpha: Burmitaphididae) differs from other burmitaphidids in having antennae distinctly longer than the body. The diagnosis of Burmitaphididae is emended, and a key to all species of the family is provided

Xue Liu [], Key Lab of Insect Evolution and Environmental Change, College of Life Sciences, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing, 100048, China; Gexia Qiao [], Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China; Yunzhi Yao* [], Key Lab of Insect Evolution and Environmental Change, College of Life Sciences, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing 100048, China; Dong Ren [], Key Lab of Insect Evolution and Environmental Change, College of Life Sciences, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing 100048, China.  相似文献   

20.
Gillespie, A.K., Archer, M., Hand, S.J. & Black, K.H., 2014. New material referable to Wakaleo (Marsupialia: Thylacoleonidae) from the Riversleigh World Heritage Area, northwestern Queensland: revising species boundaries and distributions in Oligo/Miocene marsupial lions. Alcheringa 38, 513–527. ISSN 03115518.

New material of Wakaleo oldfieldi and W. vanderleueri from the Miocene freshwater limestones of the Riversleigh World Heritage Area, northwestern Queensland, is described. This material includes the first known upper dentition of W. oldfieldi and dentaries of both species bearing the previously undescribed and morphologically distinct M3. Previously, the two species were distinguished only by size differences in P3 and the size of P3 relative to M1. Wakaleo oldfieldi exhibits a more plesiomorphic M3 that retains a well-developed talonid basin in contrast to W. vanderleueri, which has lost this structure. The phyletic succession and geological occurrences of Wakaleo species make this genus an important taxon in biochronological analyses of Australian Cenozoic assemblages. At Riversleigh, W. oldfieldi is found in deposits allocated to Faunal Zone B and Faunal Zone C, which are regarded as early and middle Miocene in age, respectively. The presence of this species in the Kutjamarpu Local Fauna of central Australia suggests that fauna may be of a similar age. Broader faunal correlations have suggested Faunal Zone C correlates with the middle Miocene Bullock Creek Local Fauna, which contains the more derived W. vanderleueri. Based on stage-of-evolution arguments, W. oldfieldi should occur in older deposits than those yielding W. vanderleueri. The presence of both species of Wakaleo in Faunal Zone C assemblages at Riversleigh suggests that current presumptions about the contemporaneity of the many Faunal Zone C Sites should be examined more rigorously.

Anna K. Gillespie [], Michael Archer [], Suzanne J. Hand [] and Karen H. Black [] School of Biological Earth and Environmental Science, UNSW 2052, Sydney, Australia. Received 3.1.2014, revised 21.2.2014, accepted 21.3.2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号