首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Masonry building aggregates are large parts of the Italian building heritage often designed without respecting seismic criteria. The current seismic Italian code does not foresee a clear calculation method to predict their static nonlinear behavior. For this reason, in this article a simple methodology to forecast the masonry aggregate seismic response has been set up. The implemented procedure has been calibrated on the results of two FEM structural analysis programs used to investigate three masonry building compounds. As a result, a design chart used to correctly predict the base shear of aggregate masonry units starting from code provisions has been set up.  相似文献   

2.
ABSTRACT

The seismic vulnerability assessment of historical UnReinforced Masonry (URM) buildings is a very complex task since it is strongly related to a great variety both of geometrical layouts and of masonry mechanical characteristics. In this article, some results of a Catania University research project, denomined “FIR 2014”, focused on the seismic vulnerability estimation of historical buildings, built in Catania after the 1963 earthquake, are presented. First, a detailed typological analysis of the considered urban fabric, characterized by typical residential masonry buildings, has been performed. Such analysis allowed recognizing an elementary structural modulus, which has been studied according to different geometrical layouts representative of isolated or aggregate buildings. The results of nonlinear static analyses, performed by applying an innovative macro-element approach, allowed for the assessment the seismic vulnerability of typical URM buildings coherently to the Italian seismic code. The adopted macro-element strategy for the seismic assessment of aggregate masonry buildings, although related to a specific historical center, may be applied to similar urban fabrics and can also be used for the calibration and validation of fast seismic assessment strategies, particularly useful for the evaluation of the seismic risk at urban scale.  相似文献   

3.
ABSTRACT

The paper analyzes the static behavior and the seismic vulnerability of the “San Francesco ad Alto” building in Ancona (Italy), which is currently used as a Regional Headquarter of the Marche Region by the Italian Army and was formerly a monastery. The global static structural behavior and the dynamic properties have been evaluated using the Finite Element modeling technique, in which the nonlinear behavior of masonry has been taken into account by proper constitutive laws. The concepts of homogenized material and smeared cracking are used to evaluate the capacity of the monastery to withstand lateral loads together with the expected demands resulting from seismic actions (N2 method), using a nonlinear static analysis (pushover). The comparison of seismic demand and capacity confirms the susceptibility of these types of buildings to extensive damage and collapse, as frequently observed in similar buildings. This paper aims to point out that advanced numerical analyses can offer significant information on the understanding of the actual structural behavior of historical buildings. It is believed that the methodology and the overall conclusions of this case study are valid for many historical monasteries in Europe.  相似文献   

4.
ABSTRACT

This article aims at contributing to the seismic performance assessment of a historic brick masonry building by finding a strength reduction coefficient through the use of linear and nonlinear modeling approaches, using Finite Element Method and Equivalent Frame modeling. To reduce the uncertainties, ambient vibration tests (AVT) were implemented. Series of simulations was performed using nonlinear dynamic analyses and incremental dynamic analysis curves were compared with the pushover curves. Results indicate that the mass-proportional pushover curve meets the mean of results obtained from IDA and the strength reduction coefficient falls into the range given in EN 1998–1 for unreinforced masonry.  相似文献   

5.
ABSTRACT

Although many experimental tests and numerical models are available in the literature, the numerical simulation of the seismic response of existing masonry buildings is still a challenging problem. While the nonlinear behavior of masonry structures is reasonably predictable when the out-of-plane behavior can be considered inhibited, when the in-plane and out-of-plane responses coexist and interact, simplified models seem unable to provide reliable numerical predictions. In this article, taking advantage of the experimental tests carried out in a shaking table on two masonry prototypes at LNEC, a macro-element approach is applied for the numerical simulations of their nonlinear response. The adopted approach allows simulating the nonlinear behavior of masonry structures considering the in-plane and out-of-plane responses. Since it is based on a simple mechanical scheme, explicitly oriented to representing the main failure mechanisms of masonry, its computational cost is greatly reduced with respect to rigorous solutions, namely nonlinear FEM approaches. Two modeling strategies are adopted, namely a regular mesh independent from the real texture of the prototypes and a detailed one coherent with the units disposal. The numerical results are discussed and the correlation between the nonlinear static analyses and the dynamic response is provided.  相似文献   

6.
ABSTRACT

Traditional domes are obtained by double curvature shells, which can be rotationally formed by any curved geometrical plane figure rotating about a central vertical axis. They are self-supported and stabilized by the force of gravity acting on their weight to hold them in compression. However, the behavior of inverted domes is different since the dome is downward and masonry inverted domes and their structural behaviors in the literature received limited attention. This article presents a nonlinear finite element analysis of historical brick masonry inverted domes under static and seismic loads. The brick masonry inverted dome in the tomb of scholar Ahmed-El Cezeri, town of Cizre, Turkey, constructed in 1508 is selected as an application. First, a detailed literature review on the masonry domes is given and the selected inverted dome is described briefly. 3D solid and continuum finite element models of the inverted masonry dome are obtained from the surveys. An isotropic Concrete Damage Plasticity (CDP) material model adjusted to masonry structures with the same tensile strength assumed along the parallel and meridian directions of the inverted dome is considered. The nonlinear static analyses and a parametric study by changing the mechanical properties of the brick unit of the inverted masonry dome are performed under gravity loads. The acceleration records of vertical and horizontal components of May 1, 2003 Bingöl earthquake (Mw = 6.4), Turkey, occurred near the region, are chosen for the nonlinear seismic analyses. Nonlinear step by step seismic analyses of the inverted dome are implemented under the vertical and horizontal components of the earthquake, separately. Static modal and seismic responses of the inverted masonry dome are evaluated using mode shapes, minimum and maximum principal strains and stresses, and damage propagations.  相似文献   

7.
Much research in recent years has focused on the seismic analysis of concrete and earthfill dams, and few works have addressed the case of masonry dams. The structural behavior of masonry dams is controlled essentially by its discontinuous nature, which may induce significant nonlinear response during an intense earthquake. In this article, a numerical tool based on the Discrete Element Method is presented, aimed at the static, dynamic, and hydromechanical analysis of masonry gravity dams. The use of discontinuous models is mandatory for the study of failure mechanisms involving the masonry discontinuities, the dam-rock interface or the rock mass joints. The Discrete Element Method is able to assemble continuous and discontinuous meshes simultaneously in the same model, providing a versatile tool to consider various assumptions and levels of analysis, ranging from simplified to detailed structural representations. A comprehensive study of the seismic behavior of Lagoa Comprida Dam, located in Portugal, is presented. Both continuous and discontinuous models were developed to assess the main failure mechanisms, including overstress, partial and global sliding, and overturning.  相似文献   

8.
ABSTRACT

This paper presents and discusses some research results related to the seismic failure risk of standard, residential and industrial, buildings designed for damage, and life-safety according to the Italian seismic code, which is somewhat similar to Eurocode 8. The five considered structural typologies are as follows: masonry, cast-in-place reinforced concrete, precast reinforced concrete, steel, and base-isolated buildings. The archetype structures have been designed according to standard practice at three sites, representative of the seismic hazard across the country. Seismic risk is defined here as the annual rate of earthquakes able to cause structural failure in terms of usability-preventing damage and global collapse. For each structure, the failure rates have been evaluated in the framework of performance-based earthquake engineering, that is, via integration of site’s probabilistic hazard and structural fragility. The former has been computed consistently with the official hazard model for Italy that is also used to define design actions in the code. The latter has been addressed via nonlinear dynamic analysis of three-dimensional numerical structural models. Results indicate that, generally, design procedures are such that seismic structural reliability tends to decrease with increasing seismic hazard of the building site, despite the homogeneous return period of exceedance of the design seismic ground-motion.  相似文献   

9.
ABSTRACT

This study investigates the seismic response of reinforced concrete buildings designed according to the current Italian building code. Number of stories, site hazard, presence and distribution of masonry infill panels, and type of lateral resisting system are the key investigated parameters. The main issues related to design and modeling are discussed. Two Limit States are considered, namely Global Collapse and Usability-Preventing Damage. The main aim of the study is a comparison between the seismic response of the buildings, investigated through nonlinear static and dynamic analyses. Irregularity in the distribution of infill panels and site hazard emerge as the most influential parameters.  相似文献   

10.
ABSTRACT

This article presents a study on the out-of-plane response of two masonry structures without box behavior tested in a shaking table. Two numerical approaches were defined for the evaluation, namely macro-modeling and simplified micro-modeling. As a first step of this study, static nonlinear analyses were performed for the macro models in order to assess the out-of-plane response of masonry structures due to incremental loading. For these analyses, mesh size and material model dependency was discussed. Subsequently, dynamic nonlinear analyses with time integration were carried out, aiming at evaluating the collapse mechanism and at comparing it to the experimental response. Finally, nonlinear static and dynamic analyses were also performed for the simplified micro models. It was observed that these numerical techniques correctly simulate the in-plane response. The collapse mechanism of the stone masonry model is in good agreement with the experimental response. However, there are some inconsistencies regarding the out-of-plane behavior of the brick masonry model, which required further validation.  相似文献   

11.
The main objective of this work is to assess the vulnerability and seismic risk of typical existing modernist unreinforced masonry (URM) modernist buildings and aggregates situated in the Eixample district of Barcelona, part of the architectural heritage of the city. The context of the analysis is the methodology proposed by the Risk-UE project. The buildings are characterized by their capacity spectrum and the earthquake demand is defined by the 5% damped elastic response spectrum, considering deterministic and probabilistic earthquake scenarios. A discussion addresses the basis of the seismic damage states probabilities and the calculated damage index. An important research effort has been focused on the buildings modeling. All the architectural elements and their mechanical properties have been studied and evaluated accurately. It has been evidenced that a detailed and complete knowledge of all the structural elements existing in this type of buildings influence directly their behavior and hence the calculations and the results. The analysis of the isolated buildings and of the aggregate building has been performed for both mentioned seismic scenarios. Finally, a complete discussion of the results is included.  相似文献   

12.
ABSTRACT

This article presents a study of the applicability of fast nonlinear analytical (FNA) models in predicting the global response of Chinese traditional timber-frame building with Dou-Gon under seismic excitation. Efforts are made to overcome challenges in establishing simplified calculation models, and the corresponding dynamic equations are derived considering the mechanical behavior of sliding column root, mortise-tenon joint and Dou-Gon (bracket sets). Furthermore, nonlinear time-history analysis is conducted under different seismic excitations. Through a verification study, a good correspondence is obtained with previous shake-table test results. Seismic response analysis is also conducted to investigate the energy dissipation of column root sliding, mortise-tenon joint, and Dou-Gon. Subsequently, peak responses of column root and roof under increased values of peak ground acceleration (PGA) are also analyzed. And then, seismic isolation ability and damping characteristics of the model are discussed.  相似文献   

13.
ABSTRACT

An experimental campaign and a numerical analysis devoted to the investigation of the out-of-plane behavior of masonry walls reinforced with Fiber Reinforced Cementitious Matrix (FRCM) are presented here. The main goal of this study is to analyze and evaluate the effectiveness of the strengthening system, by discussing failure modes and capacity of strengthened masonry walls, in order to assess their behavior under out-of-plane horizontal actions, such as, for example, seismic actions. A purposely designed experimental set-up, able to separately and independently apply an axial force and out-of-plane horizontal actions on masonry walls, was used. Experimental results are discussed and compared with the outcomes of nonlinear analyses performed on simplified finite element models of the walls. A proper evaluation of the flexural capacity of FRCM strengthened walls is the first step of the ongoing process of drawing reliable code guidelines leading to a safe design of strengthened masonry structures.  相似文献   

14.
ABSTRACT

The protection of cultural heritage against earthquake induced actions is one of the main challenges the earthquake engineering science and practice are facing. This article presents a seismic assessment study on one of the most ancient colonial buildings present in Peru, the Cathedral of Lima, focusing on its towers. A historical review highlighted how these structures, together with the whole Cathedral, suffered intense damage and partial collapse during previous earthquakes. In order to identify the structure main deficiencies, both linear kinematic analyses and nonlinear static analyses have been performed. Different nonlinear finite element models have been created to evaluate the influence of the adjacent walls. Different load distributions have been compared to evaluate how simplified patterns could provide results close to load distributions taken from a modal analysis of the complex. A simple retrofit strategy, consisting on the introduction of steel ties, has also been studied as a reference. Results show good correlation between kinematic and pushover analyses. The construction, when compared to the requirements of the national code for new buildings, results significantly vulnerable, pointing out the need to accept some structural damage even after seismic retrofit.  相似文献   

15.
ABSTRACT

In this study, industrial single-story RC precast buildings are investigated. Twenty-four case studies have been considered, in which the column height, the beam spans and the seismic hazard level are varied. The seismic design of the selected case studies is performed according to the Italian building code and additional technical documentation. Three-dimensional nonlinear models are defined to perform static and dynamic analyses for the seismic assessment of the selected case studies. Demand/capacity ratios in terms of the selected engineering demand parameters are computed for ten increasing values of the seismic input return period.  相似文献   

16.
ABSTRACT

Several architectural configurations of unreinforced masonry residential buildings are designed according to the different methods proposed in the Italian code: rules for the so-called simple masonry buildings, linear and nonlinear static analyses. Always complying with code requirements, for each building-site combination, the design was made, as much as possible, without an excessive margin of safety. The different design methods provided buildings with very different levels of safety, being linear static analysis largely overconservative with respect to the nonlinear static approach. These buildings were then analyzed in the companion paper.  相似文献   

17.
ABSTRACT

This paper discusses the seismic risk assessment of a Basilica-type church according to the provisions of the Italian Guidelines. A comparison between the results obtained with local and global approaches is reported, based on a knowledge process aimed to characterize the geometric and mechanical parameters required for a reliable structural analysis. To perform the global analyses the finite element technique was employed, with proper assumptions to account for the nonlinear behavior of masonry. Illustrating a case study, the paper critically discusses about the employability of pushover analysis methods for the seismic assessment of basilica-type churches.  相似文献   

18.
ABSTRACT

The “Quartel das Esquadras” is an 18th century infantry barrack located within the limits of the bulwarked fortress of Almeida, in Portugal. An ongoing adaptive reuse project of the building aims to recover its full capacity and also its importance, by implementing a variety of new uses. The architectural intervention results in the need of the structure to withstand new and diverse imposed loads. As the current configuration of the structure will be altered, the main objective of this article is to evaluate the suitability of some of the proposed structural interventions. The current condition has been characterized following a multidisciplinary approach comprising historical research, visual inspection, non-destructive testing, and structural analysis to identify the possible sources of major structural problems. A portion of the building particularly affected by the alterations has been selected to carry out structural analysis. A comparative safety assessment of the selected area in both current and altered condition has been done through finite element modelling and nonlinear static analysis, resulting in an identification of the weaker points against the new implemented loads and alterations. Finally, proposals for the implementation of the studied intervention, as well as recommendations for future research and analyses, have been given.  相似文献   

19.
ABSTRACT

Slender masonry structures such as towers, minarets, chimneys, and Pagoda temples can be characterized by their distinguished architectural characteristics, age of construction, and original function, but their comparable geometric and structural ratios yield to the definition of an autonomous structural type. These structures constitute a part of the architectural and cultural heritage. Their protection against earthquakes is of great importance. This concern arises from the strong damage or complete loss suffered by these structures during past earthquakes. Seismic vulnerability assessment is an issue of most importance at present time and is a concept widely used in works related to the protection of buildings. However, there is few research works carried out on developing the seismic vulnerability assessment tools for such structures.

This article presents a new method for assessing the seismic vulnerability of slender masonry structures based on vulnerability index evaluation method. The calculated vulnerability index can then be used to estimate structural damage after a specified intensity of a seismic event. Here, 12 parameters are defined to evaluate the vulnerability index for slender masonry structures. Implementation of this methodology is carried out in different types of slender masonry structures to develop vulnerability curves for these structure types.  相似文献   

20.
Abstract

A summary of dynamic measurements are presented that illustrate relations between linear seismic demand and true nonlinear response of unreinforced masonry buildings with flexible diaphragms and rocking piers subjected to a series of simulated earthquake motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号