首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Earthquakes cause severe damage to masonry structures due to inertial forces acting in the normal direction to the plane of the walls. The out-of-plane behavior of masonry walls is complex and depends on several parameters, such as material and geometric properties of walls, connections between structural elements, the characteristics of the input motions, among others. Different analytical methods and advanced numerical modeling are usually used for evaluating the out-of-plane behavior of masonry structures. Furthermore, different types of structural analysis can be adopted for this complex behavior, such as limit analysis, pushover, or nonlinear dynamic analysis.

Aiming to evaluate the capabilities of different approaches to similar problems, blind predictions were made using different approaches. For this purpose, two idealized structures were tested on a shaking table and several experts on masonry structures were invited to present blind predictions on the response of the structures, aiming at evaluating the available tools for the out-of-plane assessment of masonry structures. This article presents the results of the blind test predictions and the comparison with the experimental results, namely in terms of formed collapsed mechanisms and control outputs (PGA or maximum displacements), taking into account the selected tools to perform the analysis.  相似文献   

2.
ABSTRACT

Kinetic analysis methods based on linear and nonlinear rigid body dynamics are used to evaluate earthquake safety of masonry structures. In this study, the formulas used to calculate the in-plane and out-of-plane load capacities of masonry load-bearing walls were evaluated and a procedure based on rigid body mechanism was proposed to calculate the out-of-plane load capacities of the walls of Ottoman period masonry mosques. New aspects of the method with respect to existing formulations is the inclusion of dynamic axial load and definition of the collapse limit spectral acceleration on the overturning wall. The calculated capacities of the mosque and individual walls were compared with the results of nonlinear pushover analysis and time history analyses performed under 1.0 and 0.5 scaled forms of nine different 3-component ground motion records. It was displayed that the seismic load capacity estimated by the proposed method is very close to the values calculated by pushover and time history analyses. The method was developed on Lala Pasha Mosque, and the reliability and applicability of the proposed methodology is verified on a different historical masonry mosque in comparison to finite element analyses results.  相似文献   

3.
ABSTRACT

Finite element macro-modeling approaches are widely used for the analysis of large-scale masonry structures. Despite their efficiency, they still face two important challenges: the realistic representation of damage and a reasonable independency of the numerical results to the used discretization. In this work, the classical smeared crack approach is enhanced with a crack-tracking algorithm, originating from the analysis of localized cracking in quasi-brittle materials. The proposed algorithm is for the first time applied to a large-scale wall exhibiting multiple shear and flexural cracking. Discussion covers structural aspects, as the response of the structure under different assumptions regarding the floor rigidity, but also numerical issues, commonly overlooked in the simulation of large structures, such the mesh-dependency of the numerical results.  相似文献   

4.
ABSTRACT

Slender masonry structures such as towers, minarets, chimneys, and Pagoda temples can be characterized by their distinguished architectural characteristics, age of construction, and original function, but their comparable geometric and structural ratios yield to the definition of an autonomous structural type. These structures constitute a part of the architectural and cultural heritage. Their protection against earthquakes is of great importance. This concern arises from the strong damage or complete loss suffered by these structures during past earthquakes. Seismic vulnerability assessment is an issue of most importance at present time and is a concept widely used in works related to the protection of buildings. However, there is few research works carried out on developing the seismic vulnerability assessment tools for such structures.

This article presents a new method for assessing the seismic vulnerability of slender masonry structures based on vulnerability index evaluation method. The calculated vulnerability index can then be used to estimate structural damage after a specified intensity of a seismic event. Here, 12 parameters are defined to evaluate the vulnerability index for slender masonry structures. Implementation of this methodology is carried out in different types of slender masonry structures to develop vulnerability curves for these structure types.  相似文献   

5.
Performance-based earthquake engineering, developed over the last decades for the design and assessment of other structures, can also be applied for masonry structures if the particularities of masonry are incorporated into the procedure. According to this methodology, structural performance can be assessed according to damage states which are identified through displacement/damage indicators. While various methods for the identification of limit states from the results of nonlinear static analyses exist, the identification of damage states from the results of nonlinear dynamic analyses is still uncertain. This article investigates a number of criteria allowing to identify the attainment of significant limit states from the results of time history analyses, in terms of appropriately identified response quantities. These criteria are applied to five building prototypes and their results are compared. A comparison with the limit states derived from nonlinear static analyses is also made.  相似文献   

6.
ABSTRACT

This article presents a study on the out-of-plane response of two masonry structures without box behavior tested in a shaking table. Two numerical approaches were defined for the evaluation, namely macro-modeling and simplified micro-modeling. As a first step of this study, static nonlinear analyses were performed for the macro models in order to assess the out-of-plane response of masonry structures due to incremental loading. For these analyses, mesh size and material model dependency was discussed. Subsequently, dynamic nonlinear analyses with time integration were carried out, aiming at evaluating the collapse mechanism and at comparing it to the experimental response. Finally, nonlinear static and dynamic analyses were also performed for the simplified micro models. It was observed that these numerical techniques correctly simulate the in-plane response. The collapse mechanism of the stone masonry model is in good agreement with the experimental response. However, there are some inconsistencies regarding the out-of-plane behavior of the brick masonry model, which required further validation.  相似文献   

7.
ABSTRACT

Despite the high vulnerability of historic structures to earthquakes, the approaches for evaluating seismic demand and capacity still appear inadequate and there is little consensus on the most appropriate assessment methods to use. To develop an improved knowledge on the seismic behavior of masonry structures and the reliability of analysis tools, two real-scale specimens were tested on a shake table, and several experts were invited to foresee failure mechanism and seismic capacity within a blind prediction test. Once unveiled, experimental results were simulated using multi-block dynamics, finite elements, or discrete elements. This article gathers the lessons learned and identifies issues requiring further attention. A combination of engineering judgment and numerical models may help to identify the collapse mechanism, which is as essential as it is challenging for the seismic assessment. To this purpose, discrete modeling approaches may lead to more reliable results than continuous ones. Even when the correct mechanism is identified, estimating the seismic capacity remains difficult, due to the complexity and randomness of the seismic response, and to the sensitivity of numerical tools to input variables. Simplified approaches based on rigid body dynamics, despite the considerable experience and engineering judgment required, provide as good results as do advanced simulations.  相似文献   

8.
ABSTRACT

The rehabilitation of old buildings requires detailed knowledge of the mechanical characteristics and stress state of the structural elements, which play an important role in the intervention process. In this sense, non-slightly destructive tests can estimate structural characteristics with good precision at relatively low costs. Consequently, this article presents a device, based on the flat jack technique, applied to continuous stress monitoring over time. It also focuses on the onsite determination of service stresses and its continuous monitoring in several masonry buttresses of a historic building, as well as the assessment of the structural safety before, during, and after an intervention process. A brief analysis of the research is performed, and the motivation and the methodology adopted are described. Finally, the evolution of the measurements recorded and the analysis of the results achieved are detailed. The study enabled recommendations to be made to the intervening agents that guarantee structural safety.  相似文献   

9.
ABSTRACT

The unreinforced masonry (URM) buildings designed to be conforming with the Italian building code, as illustrated in the companion paper, were analyzed by performing time-history analyses on models realized using an equivalent frame approach and by adopting two different constitutive laws. Both the effect of record-to-record variability and of epistemic and aleatory uncertainties in modelling were explored. The achieved results constitute the basis for the evaluation of the risk level implicit in Italian code-conforming buildings. Two main performance conditions are considered, namely usability-preventing damage and global collapse limit states.  相似文献   

10.
Displacements experienced by many historic masonry structures concentrate at masonry joints and can be large before collapse is a concern, making modeling of stability using discrete element modeling (DEM) particularly suitable. In this study, masonry groin vault and arch models with several geometries were subjected to horizontal and vertical support displacements using DEM. Support movements were applied in a quasi-static manner to simulate the support settlement process. Displacements at collapse and at the point when the first block fell from the vault were recorded. Block separation and mechanisms were also noted during the simulations. A two-dimensional (2D) analytical model using thrust line analysis was developed to help evaluate the DEM results. In general, the displacements at first block fall were relatively large but significantly less than those at collapse. The groin vaults and arches exhibited significantly higher capacity to sustain vertical support displacement compared to horizontal displacements. For many geometries, the DEM collapse displacements of the groin vaults compared reasonably well to similar arches, indicating that the displacement capacity of groin vaults can be reasonably estimated using 2D simplifications. However, for certain geometries, three-dimensional effects were found to significantly affect displacement capacity.  相似文献   

11.
Masonry domes represent an important part of the architectural heritage. However, the literature about domes analysis seems less consistent than that referred to other masonry structures. The collapses that have happened in recent years as a consequence of seismic actions or lack of maintenance show the need for detailed studies. Here a limit analysis to evaluate the masonry domes behavior is presented. An algorithm based on the kinematic approach has been developed to evaluate the geometric position of the hinges that determine the minimum collapse load multiplier. The proposed procedure is validated by a comparison with some meaningful cases—the collapse of Anime Sante Church in L’Aquila, the collapse of San Nicolò Cathedral in Noto, the crack pattern of San Carlo Alle Quattro Fontane Church in Rome, and the analysis developed on Hagia Sofia in Istanbul. The comparison with real cases shows a good agreement between the model results and the phenomenological crack patterns.  相似文献   

12.
ABSTRACT

This article presents numerical simulations of two full-scale masonry structures which were tested on the shaking table within the scope of the workshop “Methods and challenges on the out-of-plane assessment of existing masonry buildings”. The numerical models have been developed on the basis of the blind-prediction models which have been improved after the publication of the test results. The solution procedure is divided into two steps with separate numerical simulations for each one. In the first step the collapse mechanism of the structure is determined by means of pushover analysis using a continuum, plasticity-based model. In the second step the dynamic response of the structure is simulated using a multibody model approach and frictional contacts. Results of the tests show reasonable, yet far from perfect predictive capabilities of the used numerical methods.  相似文献   

13.
14.
ABSTRACT

The vulnerability of masonry infills within reinforced concrete (rc) frames under out-of-plane loading induced by earthquakes has been observed in several past earthquakes through severe damage and often total collapse. Although the infill panels are assumed as non-structural elements, their damage or collapse is not desirable, given the possible consequences in terms of human life losses and repair or reconstruction costs.

Therefore, it is important to gather better insight on the out-of-plane behavior of existing infills so that strengthening guidelines can be derived. In this scope, the main objective of this study is to analyze the out-of-plane experimental behavior of masonry infilled frames that are characteristic of Portuguese buildings and can be seen in other south European countries. In the experimental study carried out, different parameters affecting the out-of-plane response of infilled frames were considered, namely, workmanship, existence of openings and prior in-plane damage. The experimental program was designed to test six half-scale specimens. The out-of-plane loading was applied uniformly to the brick infills by means of an airbag to simulate the effect of earthquakes.  相似文献   

15.
ABSTRACT

Traditional domes are obtained by double curvature shells, which can be rotationally formed by any curved geometrical plane figure rotating about a central vertical axis. They are self-supported and stabilized by the force of gravity acting on their weight to hold them in compression. However, the behavior of inverted domes is different since the dome is downward and masonry inverted domes and their structural behaviors in the literature received limited attention. This article presents a nonlinear finite element analysis of historical brick masonry inverted domes under static and seismic loads. The brick masonry inverted dome in the tomb of scholar Ahmed-El Cezeri, town of Cizre, Turkey, constructed in 1508 is selected as an application. First, a detailed literature review on the masonry domes is given and the selected inverted dome is described briefly. 3D solid and continuum finite element models of the inverted masonry dome are obtained from the surveys. An isotropic Concrete Damage Plasticity (CDP) material model adjusted to masonry structures with the same tensile strength assumed along the parallel and meridian directions of the inverted dome is considered. The nonlinear static analyses and a parametric study by changing the mechanical properties of the brick unit of the inverted masonry dome are performed under gravity loads. The acceleration records of vertical and horizontal components of May 1, 2003 Bingöl earthquake (Mw = 6.4), Turkey, occurred near the region, are chosen for the nonlinear seismic analyses. Nonlinear step by step seismic analyses of the inverted dome are implemented under the vertical and horizontal components of the earthquake, separately. Static modal and seismic responses of the inverted masonry dome are evaluated using mode shapes, minimum and maximum principal strains and stresses, and damage propagations.  相似文献   

16.
ABSTRACT

Historical centers are always composed of masonry building aggregates often designed without respecting seismic design criteria. The current seismic Italian code does not foresee a clear calculation method to predict their static nonlinear behavior. For this reason, in this article the seismic response of structural units into masonry aggregates has been predicted through a simplified modeling approach. The implemented procedure has been calibrated on the results of a numerical model performed by using the Equivalent Frame Method (EFM), implemented within a Finite Element Method (FEM) calculation program, used to investigate a basic building compound representative of the constructive techniques developed in the past decades in the Southern Italy.

First, the whole aggregate has been modeled and analyzed in the nonlinear static field in order to evaluate the seismic behavior of both intermediate and head structural units.

Later on, the seismic response of these structural units, considered as isolated structures, has been assessed by considering in simplified way their position in the aggregate, as well as the influence of other constructions.

Finally, the achieved results on the above single analysis cases have been compared with those deriving from the investigation of the whole building compound, allowing to confirm the effectiveness of the proposed novel analysis procedure.  相似文献   

17.
ABSTRACT

A displacement-based (DB) assessment procedure was used to predict the results of shake table testing of two unreinforced masonry buildings, one made of clay bricks and the other of stone masonry. The simple buildings were subject to an acceleration history, with the maximum acceleration incrementally increased until a collapse mechanism formed. Using the test data, the accuracy and limitations of a displacement-based procedure to predict the maximum building displacements are studied. In particular, the displacement demand was calculated using the displacement response spectrum corresponding to the actual shake table earthquake motion that caused wall collapse (or near collapse). This approach was found to give displacements in reasonable agreement with the wall’s displacement capacity.  相似文献   

18.
This article presents the results of the evaluation of the seismic safety of the Ancien Hôpital de Sion, an important Swiss architectural heritage building, situated in the Canton of Valais, the region with the highest seismic hazard in Switzerland. Three-dimensional Applied Element (AEM) modeling of the whole structure has been performed and validated. The adopted modeling strategy, together with nonlinear dynamic analysis, was able to represent the actual behavior and failure mechanisms typical of complex masonry structures, in addition to a good computational efficiency compared to other available numerical approaches. The local collapse mechanisms have been also studied through a kinematic limit analysis based on rigid block rotation. Both linear and nonlinear approaches have been followed together with the capacity spectrum method. The results provided by the different methodologies have been compared with the aim to provide possible insights concerning a general procedure for the assessment of the safety of such type of structures.  相似文献   

19.
Seismic analyses of 3-, 9-, and 20-story moment resisting frame (MRF) buildings with 5 hysteresis models were conducted. The objectives of the study were to study the effect of the hysteresis type on the global collapse drift limit, seismic demand, and capacity/demand ratio for MRF structures under seismic loads. The results show that strength degradation significantly decreases the global drift limit and the safety of the structure, whereas, the existence of stiffness degradation or pinching has small effect. The results suggest that the global drift limit for a building is not likely to be the collapse limit state (CLS) which will most likely be governed by local collapse.  相似文献   

20.
ABSTRACT

An experimental campaign and a numerical analysis devoted to the investigation of the out-of-plane behavior of masonry walls reinforced with Fiber Reinforced Cementitious Matrix (FRCM) are presented here. The main goal of this study is to analyze and evaluate the effectiveness of the strengthening system, by discussing failure modes and capacity of strengthened masonry walls, in order to assess their behavior under out-of-plane horizontal actions, such as, for example, seismic actions. A purposely designed experimental set-up, able to separately and independently apply an axial force and out-of-plane horizontal actions on masonry walls, was used. Experimental results are discussed and compared with the outcomes of nonlinear analyses performed on simplified finite element models of the walls. A proper evaluation of the flexural capacity of FRCM strengthened walls is the first step of the ongoing process of drawing reliable code guidelines leading to a safe design of strengthened masonry structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号