首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

This article describes the structural design, nonlinear modeling, and seismic analysis of prototype single-storey non-residential steel buildings made of moment-resisting portal frames in the transverse direction and concentric braces in the longitudinal direction. Various design parameters (building geometry, seismic hazard, foundation soil category) and different modeling assumptions (bare frame model, model including cladding elements, ground motions including vertical accelerations, and modeling uncertainties) were considered to investigate their effects on the simulated seismic performance.  相似文献   

2.
ABSTRACT

Several architectural configurations of unreinforced masonry residential buildings are designed according to the different methods proposed in the Italian code: rules for the so-called simple masonry buildings, linear and nonlinear static analyses. Always complying with code requirements, for each building-site combination, the design was made, as much as possible, without an excessive margin of safety. The different design methods provided buildings with very different levels of safety, being linear static analysis largely overconservative with respect to the nonlinear static approach. These buildings were then analyzed in the companion paper.  相似文献   

3.
ABSTRACT

A displacement-based (DB) assessment procedure was used to predict the results of shake table testing of two unreinforced masonry buildings, one made of clay bricks and the other of stone masonry. The simple buildings were subject to an acceleration history, with the maximum acceleration incrementally increased until a collapse mechanism formed. Using the test data, the accuracy and limitations of a displacement-based procedure to predict the maximum building displacements are studied. In particular, the displacement demand was calculated using the displacement response spectrum corresponding to the actual shake table earthquake motion that caused wall collapse (or near collapse). This approach was found to give displacements in reasonable agreement with the wall’s displacement capacity.  相似文献   

4.
A simplified approach for analyzing the nonlinear response of masonry buildings, based on the equivalent frame modeling procedure and on the nonlinear equivalent static analyses, is presented. A nonlinear beam finite element (FE) is formulated in the framework of a force-based approach, where the stress fields are expanded along the beam local axis, and introduced in a global displacement-based FE code. In order to model the nonlinear constitutive response of the masonry material, the lumped hinge approach is adopted and both flexural and shear plastic hinges are located at the two end nodes of the beam. A classical elastic-plastic constitutive relationship describes the nonlinear response of the hinges, the evolution of the plastic variables being governed by the Kuhn-Tucker and consistency conditions. An efficient element state determination procedure is implemented, which condenses the local deformation residual into the global residual vector, thus avoiding the need to perform the inner loops for computing the element nonlinear response. The comparison with some relevant experimental and real full-scale masonry walls is presented, obtaining a very good agreement with the available results, both in terms of global pushover curves and damage distributions.  相似文献   

5.
ABSTRACT

The protection of cultural heritage against earthquake induced actions is one of the main challenges the earthquake engineering science and practice are facing. This article presents a seismic assessment study on one of the most ancient colonial buildings present in Peru, the Cathedral of Lima, focusing on its towers. A historical review highlighted how these structures, together with the whole Cathedral, suffered intense damage and partial collapse during previous earthquakes. In order to identify the structure main deficiencies, both linear kinematic analyses and nonlinear static analyses have been performed. Different nonlinear finite element models have been created to evaluate the influence of the adjacent walls. Different load distributions have been compared to evaluate how simplified patterns could provide results close to load distributions taken from a modal analysis of the complex. A simple retrofit strategy, consisting on the introduction of steel ties, has also been studied as a reference. Results show good correlation between kinematic and pushover analyses. The construction, when compared to the requirements of the national code for new buildings, results significantly vulnerable, pointing out the need to accept some structural damage even after seismic retrofit.  相似文献   

6.
ABSTRACT

This article aims at contributing to the seismic performance assessment of a historic brick masonry building by finding a strength reduction coefficient through the use of linear and nonlinear modeling approaches, using Finite Element Method and Equivalent Frame modeling. To reduce the uncertainties, ambient vibration tests (AVT) were implemented. Series of simulations was performed using nonlinear dynamic analyses and incremental dynamic analysis curves were compared with the pushover curves. Results indicate that the mass-proportional pushover curve meets the mean of results obtained from IDA and the strength reduction coefficient falls into the range given in EN 1998–1 for unreinforced masonry.  相似文献   

7.
ABSTRACT

In this article, a predictive model for the seismic vulnerability assessment of old Italian historic centers is presented through its direct application to a meaningful case study, the historic center of Scanno, in Abruzzi, Italy.

The proposed method is calibrated on the basis of the observations carried out on similar historic centers hit by the 2009 L’Aquila earthquake and is applied in order to provide likely damage scenarios by means of fragility curves. The method is based on the evaluation of a limited number of structural and typological parameters that can be obtained by simple and rapid inspections on buildings. In addition, it is conceived in order to provide useful information on the most effective anti-seismic strategies to be implemented on urban scale for pursuing a global mitigation of the seismic risk and for the application of suitable risk reduction policies.

The final aim of the article is to give an applicative vision of the method, by providing instructions on how to judge the features of the buildings that are influential on their seismic behavior, as well as by showing the potentiality of the method itself in providing likely damage scenarios, also with the support of GIS-based representations.  相似文献   

8.
Abstract

Eurocode 8 is applied for the complete design of 26 multi-storey reinforced concrete buildings to study its operationally and compare the implications of trading strength for ductility through designing the same structure for a different Ductility Class. The difference between the conventional full Capacity Design of columns in bending and the relaxed one allowed by Eurocode 8 is quantified, and the implications on the column capacities are examined. About half of the designed buildings, representative of the class of regular frames, are subjected to nonlinear dynamic response analyses to spectrum-compatible motions with intensities up to twice that of the design motion. Nonlinear modeling is very simple, but gives satisfactory agreement with available quasistatic or pseudodynamic test results on full scale structures. Results show that the three Ductility Classes of Eurocode 8 are essentially equivalent in terms of material quantities and seismic performance. Within the limitations of the nonlinear modelling, the response results suggest very satisfactory performance of structures designed to Eurocode 8, even under twice the design motion intensity. Softening of the structure due to concrete cracking and steel yielding significantly reduces the seismic force demands and contributes to the satisfactory performance, despite the increased P — 6 effects. Another important contributor to the good performance is the significant overstrength of the members considered in the analyses with their average as-built properties. Beam overstrength due to the contribution of the slab to flexural capacity is large enough to overcome the effects of the application of the relaxed Capacity Design rule to columns in bending. However, the resulting column plastic hinging does not lead to drift concentrations suggesting formation of storey-sway mechanisms.  相似文献   

9.
This article presents the results of the evaluation of the seismic safety of the Ancien Hôpital de Sion, an important Swiss architectural heritage building, situated in the Canton of Valais, the region with the highest seismic hazard in Switzerland. Three-dimensional Applied Element (AEM) modeling of the whole structure has been performed and validated. The adopted modeling strategy, together with nonlinear dynamic analysis, was able to represent the actual behavior and failure mechanisms typical of complex masonry structures, in addition to a good computational efficiency compared to other available numerical approaches. The local collapse mechanisms have been also studied through a kinematic limit analysis based on rigid block rotation. Both linear and nonlinear approaches have been followed together with the capacity spectrum method. The results provided by the different methodologies have been compared with the aim to provide possible insights concerning a general procedure for the assessment of the safety of such type of structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号