首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
The aim of this work is to verify or refute hypothesis of existence of basic/universal glass batch: quartz sand: potash: limestone, at a ratio of 2: 1: 1 used in Bohemian glass production since the middle ages onwards and to simulate the preparation of a potassium glass type with the composition used in medieval Bohemia. The chemical composition of Bohemian glass, which incorporated in the proposed glass batch for glassmaking on a laboratory scale, was evaluated by (a) findings directly related to glassmaking (samples from glasswork in Moldava dating back to the 15th century) and (b) information from publications.Experimentally produced glasses for the present paper were prepared from raw materials such as ash, leached ash, potash, limestone and quartz sand. The plant raw materials (spruce, beech and bracken ashes, raw and refined potash) were treated and prepared by methods similar to the production procedures used in the pre-industrial era.The main contrast was found in the CaO/K2O weight ratio, which was determined in glasses that were characteristic of given periods. While this ratio was often below 1 in glasses of the 15th century, it reached values above 1 in glasses at the turn of the 16th-17th centuries. This result may indicate that the composition of the glass batch had changed.The results of the present study reject the current scholarly work dealing with glass batch composition during the 14th-17th centuries and confirm that glass produced in some Bohemian medieval glassworks could have been melted from a batch that included plant ash, making the use of limestone unnecessary. The traditional suggestion of the exact ratios of raw materials, often cited in historical literature, seems to be impossible. The glassmakers had to react to the variable composition of the raw materials, especially plant ash.  相似文献   

2.
Analysis has been conducted on 19 blue glasses from Amarna in Middle Egypt dated to around 1350 BC. The results suggest that these glasses fall into two distinct types: cobalt coloured glasses with a natron based alkali made from local Egyptian materials, and copper coloured glasses with a plant ash alkali, which follow a Mesopotamian tradition of glass making. It is suggested that at least some of this copper/plant ash glass is imported into Egypt during the Amarna period despite extensive local production of cobalt/natron glass. Existing analyses (Lilyquist and Brill 1995) of the earliest glass from the reign of Tuthmosis III (c. 1450 BC) suggest that during this period the same two types of glass are present. Local Egyptian cobalt and natron in these early glasses implies that, despite the lack of archaeological evidence for production sites, glass was produced from its raw materials in Egypt as early as the reign of Tuthmosis III.  相似文献   

3.
TH. Rehren 《Archaeometry》2001,43(4):483-489
Cobalt‐blue glass of the Near and Middle Eastern Late Bronze Age has long been recognized as compositionally distinct from other contemporary glasses (Sayre 1967; Lilyquist et al. 1993). It has been suggested recently by Shortland and Tite (2000) that this chemical distinction reflects the use of Egyptian raw materials for making these glasses, different from those used to make glass in Mesopotamia, or its manufacture by Mesopotamian workmen, possibly in Egypt. This assumed that cobalt‐bearing alum from the Western Oases and mineral natron from the Wadi Natrun were used for the cobalt‐blue glass, while the other, probably Mesopotamian, glasses were made using plant ash as the main alkali source. This note discusses some technical aspects of the possible ways in which the cobalt could have been added to the glass, and how this relates to the likely raw glass used in its making. Combining earlier suggestions by Noll (1981) and Brill in Lilyquist et al. (1993), an alternative explanation of the chemical characteristics is suggested, maintaining that all the glasses under discussion were made using plant ash. Differences in alkali concentrations probably reflect different soil and plant chemistries, and the colorant was probably added to the glass after being precipitated from the alum as a complex cobalt aluminium hydroxide.  相似文献   

4.
87Sr/86Sr ratios have been determined for glasses from four production sites, dated to between the sixth and the 11th centuries, in the Eastern Mediterranean region. On the basis of elemental analyses, the glasses at each location are believed to have been melted from different raw materials. Two glass groups, from Bet Eli‘ezer and Bet She‘an, in Israel, are believed to have been based upon mixtures of Levantine coastal sands and natron, and have 87Sr/86Sr ratios close to 0.7090, plus high elemental strontium, confirming a high concentration of modern marine shell (87Sr/86Sr ~ 0.7092) in the raw materials. The isotopic compositions of these two groups of glasses differ slightly, however, probably reflecting a varying ratio of limestone to shell because the sands that were utilized were from different coastal locations. Natron‐based glasses from a workshop at Tel el Ashmunein, Middle Egypt, have 87Sr/86Sr values of 0.70794–0.70798, and low elemental strontium, consistent with the use of limestone or limestone‐rich sand in the batch. High‐magnesia glasses based on plant ash, from Banias, Israel, have 87Sr/86Sr values of 0.70772–0.70780, probably reflecting the isotopic composition of the soils that were parental to the plants that were ashed to make the glass. Strontium and its isotopes offer an approach to identifying both the raw materials and the origins of ancient glasses, and are a potentially powerful tool in their interpretation.  相似文献   

5.
The chemical composition of potassium–calcium ‘wood‐ash’ glass reflects the elemental pattern of the involved non‐volatile base materials in quartz sand, wood ash and possibly potash. The essential elemental ratio K2O/CaO of wood ash varies between 0.2 and 0.8, and depends on the habitat and geological substratum of the wood rather than on the tree species; ratios between 1.0 and 3.0 in wood‐ash glass are only possible when potash is added as a third base material. Melting temperatures of wood‐ash glass sensu stricto, termed K–Ca‐2, produced with the two raw materials quartz sand and wood ash, are between 1250°C and 1400°C, while those of three‐component‐glasses, termed K–Ca‐3, are between 900°C and 1250°C, according to the amount of added potash. Experimentally produced glass displays different hues, from colourless to brown, olive‐green and pink, according to the chemical composition of the wood ash. Elevated MnO concentrations between 0.5 and 3 wt% may originate from wood ash and are hence not necessarily an indicator of colour‐inhibiting additives. Phosphate stemming from wood ash is an essential discriminator between wood‐ash glass and potash–lime glass. Because wood ash contains only minor amounts of sodium, wood‐ash glass with equal concentrations of potassium and sodium is a hybrid glass type, where besides quartz sand, wood ash, possibly potash and also soda‐rich cullet have been applied for glass production.  相似文献   

6.
The study analyses the chemical composition of 57 glass samples from 40 beads discovered at 20 archaeological sites in Poland. The beads are dated to Hallstatt C–Early La Tène periods (c.800/750–260/250 bce ). Analyses were carried out using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Two groups were distinguished among the glasses based on the MgO/K2O ratio: high-magnesium glass (HMG), five samples; and low-magnesium glass (LMG), 52 samples. The former were melted with halophyte plant ash, the second with mineral soda. These glasses were produced in the Eastern Mediterranean (more likely in Mesopotamia or Syro-Palestine than in Egypt) and transported in the form of semi-products to secondary glass workshops in Europe. Some of the white opaque glass was coloured and opacified in Europe.  相似文献   

7.
Strontium isotopic analysis has been proposed as a suitable method to determine the primary production location of ancient plant ash glasses. The technique is based upon the assumption that Sr enters this glass type with the plant ash used as a flux material, and that the 87Sr/86Sr ratio of the resulting glass reflects the geological provenance of that flux. In such case, the bulk Sr isotopic composition of the bedrock should be inherited unchanged in the plants growing on that bedrock. Different types of plant ash glasses have been shown to have widely differing 87Sr/86Sr compositions. In this study, the 87Sr/86Sr composition of several plant species growing on different bedrock types is measured, and compared to the bulk Sr isotopic composition and petrology of that bedrock. The paper shows that the 87Sr/86Sr ratio of these plants is a function not only, or even mostly, of the local geology, but also of the Sr isotopic composition of the total water consumed by that plant. This is highly likely to be both plant species dependent and dependent on the small-scale hydrology of the area immediately surrounding the plant. In this way, no definite relation between the isotopic composition of a geological outcrop and the plants growing on this bedrock can be inferred. Hence, the isotopic composition of a plant ash made from such plants is uncertain and moreover species dependent. Though groups of plant ash glasses can certainly be compared in time and space using Sr isotopes, it may prove difficult to ascertain a plant ash glass type to a specific geographical-geological region.  相似文献   

8.
It is long known that most Egyptian and Roman base glass compositions show a remarkably small scatter in their chemical composition. By plotting appropriately reduced base glass compositions in ternary phase diagrams it is demonstrated that the compositional fields defined by the compositional scatter are closely related to eutectic regions within the relevant phase diagrams. This is interpreted as to be due to an eutectic melting regime, i.e. partial melting in the presence of a crystalline buffer or residuum, and not primarily a result of strict recipe and raw material control. Furthermore, it is demonstrated that possibly two independent melting temperature indicators are correlated, suggesting a factual relationship between melting temperature and melt composition. This evidence is taken to develop a “partial batch melting model” for these early glasses, as opposed to the “total batch melting model” of Mediaeval and early modern glasses. Some archaeological implications of this model are briefly discussed.  相似文献   

9.
European mixed-alkali glasses are compared with Sayre and Smith's categorisation for ancient glass and with the chemical compositions of other prehistoric and later European glasses. The new categories reported here indicate that a wide range of alkali raw materials was used in the production of glasses found in prehistoric European contexts. At least five major chemical categories of glass are now known to have been used in prehistoric and early Roman Europe. A plant species of the genus Sulicorniu is suggested as a possible alkali source in ancient European glasses.  相似文献   

10.
F. GALLO  A. SILVESTRI 《Archaeometry》2012,54(6):1023-1039
An archaeometric study was performed on 33 medieval glass samples from Rocca di Asolo (northern Italy), in order to study the raw materials employed in their production, identify analogies with medieval glass from the Mediterranean area and possible relationships between chemical composition and type and/or production technique, contextualize the various phases of the site and extend data on Italian medieval glass. The samples are soda–lime–silica in composition, with natron as flux for early medieval glasses and soda ash for the high and late medieval ones. Compositional groups were identified, consistent with the major compositional groups identified in the western Mediterranean during the first millennium AD . In particular, Asolo natron glass is consistent with the HIMT group and recycled Roman glass; soda ash glass was produced with the same type of flux (Levantine ash) but a different silica source (siliceous pebbles, and more or less pure sand). Cobalt was the colouring agent used to obtain blue glass; analytical data indicate that at least two different sources of Co were exploited during the late medieval period. Some data, analytical and historical, suggest a Venetian provenance for the high/late medieval glass and a relationship between type of object (beaker or bottle) and chemical composition.  相似文献   

11.
Thirteenth- to fourteenth-century ecclesiastical window glass, excavated from the administrative centre of Koroinen, Finland, represents the earliest window glass in the country and includes the only emerald green window glass known from Finland at this time. This was examined, together with some excavated vessel glass. X-ray analysis, using scanning electron microscopy-energy dispersive spectrometry and proton induced X-ray emission, reveals that while the vessels are made from potash-lime, soda-lime, mixed alkali and lead-silica glasses, the window glasses are lead-silica and wood ash-lead-silica glasses; they resemble similar glasses from central Europe and suggest that Koroinen shared the trading network of other European religious centres.  相似文献   

12.
It is sometimes possible to discriminate between glasses made at different factory sites by using chemical analysis. However, this is not necessarily a means of provenancing them unambiguously because glass of slightly different compositions may have been fused using different proportions of the same raw materials. The determination of oxygen, strontium and lead isotopes can provide the possibility of linking the geological sources of the glass raw materials to the production sites on which the glass was fused. Here we consider the possible isotope contributions made to the raw materials thought to have been used in the manufacture of plant ash and natron glasses found at 8th–9th century al-Raqqa, Syria. The isotopic data from al-Raqqa are compared with published results from other Middle Eastern and German glasses. We show that strontium isotopes, in particular, provide a reliable means of distinguishing between the sources of plant ash glass raw materials and that oxygen and lead isotope signatures are less discriminatory.  相似文献   

13.
A set of ten Millefiori glass fragments dating from the 17th century, originated from archaeological excavations carried out at the Monastery of Sta. Clara-a-Velha (Coimbra, Portugal), were characterized by X-ray electron probe microanalysis (EPMA), Raman microscopy and UV–Visible absorption spectroscopy. All glasses are of soda-lime-silica type. The use of coastal plant ash is suggested by the relatively high content of MgO, K2O and P2O5, as well as by the presence of chlorine. Tin oxide or calcium antimonate were the opacifiers used in the opaque glasses, cobalt in the blue glasses, copper in the turquoise glasses, iron in the yellow and greenish glasses, and iron and copper were found in the opaque red and aventurine glasses. Based on the concentrations of alumina and silica four different sources of silica were identified, allowing the classification of the glasses into the following compositional groups: low alumina (<2 wt%), which includes a sub-group of cristallo samples with SiO2 > 70 wt%, medium alumina (2–3 wt%), high alumina (3–6 wt%) and very high alumina (>6 wt%). Comparison with genuine Venetian and façon-de-Venise compositions showed that two fragments are of Venetian production, one of Venetian or Spanish production and the remaining are of unknown provenance. In two fragments the glass of the decoration is probably Venetian or Spanish but the glass used in the body is also of unknown provenance.  相似文献   

14.
Soda-rich plant ashes have been used in the Near East and Egypt in the production of glass and faience from the 4th millennium BC onwards, and mixed alkali plant ashes have been similarly used in western Europe during the 2nd and first half of the 1st millennia BC. In the production of these ashes, the plants of interest are salt resistant, halophytic plants of the Chenopodiaceae family, growing in coastal, salt marsh and desert regions. A primary criterion in selecting ashes for glass and faience production is that the alkalis are predominantly in the form of carbonates, bicarbonates and hydroxides rather than either chlorides or sulphates. In the current paper, previously published data for such ashes are brought together and re-assessed, and new analytical data are presented for ashes produced from plants collected in Egypt, Greece and the UK. For the ashes produced from Salsola kali plants collected from Greece and the UK, the soda to potash ratios (0.3–1.8) do not show any systematic differences between the regions in which the plant was growing, but instead reflect the fact that this species favours the accumulation of K+ over Na+ ions. Further, the results suggest that S. kali could have been the source of the mixed alkali ashes used in western Europe, if the ashes had first been treated in some way in order to reduce their lime-plus-magnesia contents.  相似文献   

15.
O. MECKING 《Archaeometry》2013,55(4):640-662
In Trommsdorfstraße, Erfurt, a glass‐processing workshop has been excavated, which produced lead glass rings and beads in the 13th century. This workshop produced two different lead glasses. The first, a high‐lead glass, could be found throughout Europe, from England to Russia. However, another newly defined type of glass could be identified (Central European lead–ash glass). This can be demonstrated by analysing the literature, and it has been found in eastern Germany, Poland, Slovakia and the Czech Republic. A Slavic lead–ash glass with the same ash content as the Central European lead–ash glass but lower amounts of lead was produced in Eastern Europe. In western Germany, another type of ash (beech ash) was used to produce a wood‐ash lead glass. Lead‐isotope analysis proved that the same source of lead was used for the wood‐ash lead glass and the high‐lead glass in western Germany and the two types of glass from Erfurt.  相似文献   

16.
This paper presents oxygen, strontium and neodymium isotopic analysis from a series of Late Bronze Age glasses from Egypt and Mesopotamia. It was found that oxygen and neodymium isotopes alone cannot readily distinguish between glasses from the various sites. However, combined Sr and Nd isotope analysis separate the data into three groups: an Egyptian group with relatively low Sr and Nd ratios; a Late Bronze Age (LBA) Nuzi group with high Sr and low Nd ratios; and an intermediate Sr and high Nd ratio grouping of glasses from Tell Brak. These findings suggest that most of the glass from Nuzi and Tell Brak had different raw materials and hence the glass was probably produced at different manufacturing sites. However, one glass ingot found at Tell Brak (TB1) appears to have Nuzi‐type Sr–Nd characteristics. This is the first positive identification of multiple production sites in LBA Mesopotamia and an exceptional example of a glass that may have been exchanged from one LBA site to another.  相似文献   

17.
The first European settlers came to North America in the early 17th century using glass in the form of containers and decorative objects. Thus, glass is a horizon marker for all historic period settlements and a potential source of chronometric dates at archaeological sites belonging to the historic period in the Americas. We have developed a new absolute dating method based upon water diffusion into the surface of manufactured glasses that predicts diffusion coefficients based upon variation in glass chemical constituents. Low‐temperature (< 190°C) hydration experiments have been performed on a set of five high‐calcium (21.7–28.3%) glasses that were used to manufacture wine bottles from the 17th?19th centuries. Infrared spectroscopy and secondary ion mass spectrometry was used to model the water diffusion/alkali exchange process. The ability of the model to accurately predict archaeological ages was evaluated with artefacts recovered from ceramic‐dated contexts at Thomas Jefferson's plantation known as Monticello.  相似文献   

18.
The ability to make rapid measurements on small samples using laser fluorination enhances the potential of oxygen isotopes in the investigation of early inorganic materials and technologies. δ18O and 87Sr/86Sr values are presented for glass from two primary production sites, four secondary production sites and a consumer site in the Near East, dating from Late Antiquity to the medieval period. δ18O is in general slightly less effective than 87Sr/86Sr in discriminating between sources, as the spread of measured values from a single source is somewhat broader relative to the available range. However, while 87Sr/86Sr is derived predominantly from either the lime‐bearing fraction of the glass‐making sand or the plant ash used as a source of alkali, δ18O derives mainly from the silica. Thus the two measurements can provide complementary information. A comparison of δ18O for late Roman – Islamic glasses made on the coast of Syria–Palestine with those of previously analysed glasses from Roman Europe suggests that the European glasses are relatively enriched in 18O. This appears to contradict the view that most Roman glass was made using Levantine sand and possible interpretations are discussed.  相似文献   

19.
57Fe Mössbauer spectral data for six excavated and two simulated medieval stained glass samples are reported. Iron-containing precipitates are observed in the two simulated medieval glasses and are responsible for the amber colour of these samples. The ferrous/ferric ratio of the other samples is dependent on the glass composition and glass making conditions. The green glasses are associated with the presence of both ferrous and ferric iron, the ratio being very similar in three of the glasses studied, while in the purple and emerald green glasses the iron which is constitutionally incorporated in the glass is solely in the ferric oxidation state. The UVvisible spectra of some of the glasses are used to assist in interpretation of the colourant action of iron, and the role of Mössbauer spectroscopy in linking separate glass fragments with a common source is also indicated.  相似文献   

20.
Sets of 20 soda ash, 16 soda lime and 23 wood ash glasses mainly from excavations in Europe were analysed by microprobe and LA–ICP‐MS for 61 elements and are presented as average concentrations with standard deviations. Concentrations of sodium, potassium and magnesium allow the major glass type to be identified. Specific compositions of the raw materials of glass production indicate certain sources, technical processes and ages. Heavy minerals etc. of quartz sands contain rare earth elements (REE) from crustal fractionations that are different for the three major glass types. Accumulations of P, B, Ba, Mn and K in wood from soils by organic processes can characterize glass from certain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号