首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D. BROSETA  N. TONNET  V. SHAH 《Geofluids》2012,12(4):280-294
The various modes of acid gas storage in aquifers, namely structural, residual, and local capillary trapping, are effective only if the rock remains water‐wet. This paper reports an evaluation, by means of the captive‐bubble method, of the water‐wet character in presence of dense acid gases (CO2, H2S) of typical rock‐forming minerals such as mica, quartz, calcite, and of a carbonate‐rich rock sampled from the caprock of a CO2 storage reservoir in the South‐West of France. The method, which is improved from that previously implemented with similar systems by Chiquet et al. (Geofluids 2007; 7 : 112), allows the advancing and receding contact angles, as well as the adhesion behavior of the acid gas on the mineral substrate, to be evaluated over a large range of temperatures (up to 140°C), pressures (up to 150 bar), and brine salinities (up to NaCl saturation) representative of various geological storage conditions. The water‐receding (or gas‐advancing) angle that controls structural and local capillary trapping is observed to be not significantly altered in the presence of dense CO2 or H2S. In contrast, some alteration of the water‐advancing (or gas‐receding) angle involved in residual trapping is observed, along with acid gas adhesion, particularly on mica. A spectacular wettability reversal is even observed with mica and liquid H2S. These results complement other recent observations on similar systems and present analogies with the wetting behavior of crude oil/brine/mineral systems, which has been thoroughly studied over the past decades. An insight is given into the interfacial forces that govern wettability in acid gas‐bearing aquifers, and the consequences for acid gas geological storage are discussed along with open questions for future work.  相似文献   

2.
CO2 injected into rock formations for deep geological storage must not leak to surface, since this would be economically and environmentally unfavourable, and could present a human health hazard. In Italy natural CO2 degassing to the surface via seeps is widespread, providing an insight into the various styles of subsurface ‘plumbing’ as well as surface expression of CO2 fluids. Here we investigate surface controls on the distribution of CO2 seep characteristics (type, flux and temperature) using a large geographical and historical data set. When the locations of documented seeps are compared to a synthetic statistically random data set, we find that the nature of the CO2 seeps is most strongly governed by the flow properties of the outcropping rocks, and local topography. Where low‐permeability rocks outcrop, numerous dry seeps occur and have a range of fluxes. Aqueous fluid flow will be limited in these low‐permeability rocks, and so relative permeability effects may enable preferential CO2 flow. CO2 vents typically occur along faults in rocks that are located above the water table or are low permeability. Diffuse seeps develop where CO2 (laterally supplied by these faults) emerges from the vadose zone and where CO2 degassing from groundwater follows a different flow path due to flow differences for water and CO2 gas. Bubbling water seeps (characterized by water bubbling with CO2) arise where CO2 supply enters the phreatic zone or an aquifer. CO2‐rich springs often emerge where valleys erode into CO2 aquifers, and these are typically high flux seeps. Seep type is known to influence human health risk at CO2 seeps in Italy, as well as the topography surrounding the seep which affects the rate of gas dispersion by wind. Identifying the physical controls on potential seep locations and seep type above engineered CO2 storage operations is therefore crucial to targeted site monitoring strategy and risk assessment. The surface geology and topography above a CO2 store must therefore be characterized in order to design the most effective monitoring strategy.  相似文献   

3.
S. LI  M. DONG  Z. LI  S. HUANG  H. QING  E. NICKEL 《Geofluids》2005,5(4):326-334
This paper reports a laboratory study of the gas breakthrough pressure for different gas/liquid systems in the Mississippian‐age Midale Evaporite. This low‐permeability rock formation is the seal rock for the Weyburn Field in southeastern Saskatchewan, Canada, where CO2 is being injected into an oil reservoir for enhanced recovery and CO2 storage. A technique for experimentally determining CO2 breakthrough pressure at reservoir conditions is presented. Breakthrough pressures for N2, CO2 and CH4 were measured with the selected seal‐rock samples. The maximum breakthrough pressure is over 30 MPa for N2 and approximately 21 MPa for CO2. The experimental results demonstrate that the Weyburn Midale Evaporite seal rock is of high sealing quality. Therefore, the Weyburn reservoir and Midale Beds can be used as a CO2 storage site after abandonment. The measured results also show that the breakthrough pressure of a seal rock for a gas is nearly proportional to the interfacial tension of the gas/brine system. The breakthrough pressure of a CO2/brine system is significantly reduced compared with that of a CH4/brine system because of the much lower interfacial tension of the former. This implies that a seal rock that seals the original gas in a gas reservoir or an oil reservoir with a gas cap may not be tight enough to seal the injected CO2 if the pressure during or after CO2 injection is the same or higher than the original reservoir pressure. Therefore, reevaluation of the breakthrough pressure of seal rocks for a given reservoir is necessary and of highest priority once it is chosen as a CO2 storage site.  相似文献   

4.
We retrace hydrogeochemical processes leading to the formation of Mg–Fe–Ca carbonate concretions (first distinct carbonate population, FDCP) in Martian meteorite ALH84001 by generic hydrogeochemical equilibrium and mass transfer modeling. Our simple conceptual models assume isochemical equilibration of orthopyroxenite minerals with pure water at varying water‐to‐rock ratios, temperatures and CO2 partial pressures. Modeled scenarios include CO2 partial pressures ranging from 10.1325 to 0.0001 MPa at water‐to‐rock ratios between 4380 and 43.8 mol mol?1 and different temperatures (278, 303 and 348 K) and enable the precipitation of Mg–Fe–Ca solid solution carbonate. Modeled range and trend of carbonate compositional variation from magnesio‐siderite (core) to magnesite (rim), and the precipitation of amorphous SiO2 and magnetite coupled to magnesite‐rich carbonate are similar to measured compositional variation. The results of this study suggest that the early Martian subsurface had been exposed to a dynamic gas pressure regime with decreasing CO2 partial pressure at low temperatures (approximately 1.0133 to 0.0001 MPa at 278 K or 6 to 0.0001 MPa at 303 K). Moderate water‐to‐rock ratios of ca. 438 mol mol?1 and isochemical weathering of orthopyroxenite are additional key prerequisites for the formation of secondary phase assemblages similar to ALH84001’s ‘FDCP’. Outbursts of water and CO2(g) from confined ground water in fractured orthopyroxenite rocks below an unstable CO2 hydrate‐containing cryosphere provide adequate environments on the early Martian surface.  相似文献   

5.
Geologic carbon capture and storage (CCS) is an option for reducing CO2 emissions, but leakage to the surface is a risk factor. Natural CO2 reservoirs that erupt from abandoned oil and gas holes leak to the surface as spectacular cold geysers in the Colorado Plateau, United States. A better understanding of the mechanisms of CO2‐driven cold‐water geysers will provide valuable insight about the potential modes of leakage from engineered CCS sites. A notable example of a CO2‐driven cold‐water geyser is Crystal Geyser in central Utah. We investigated the fluid mechanics of this regularly erupting geyser by instrumenting its conduit with sensors and measuring pressure and temperature every 20 sec over a period of 17 days. Analyses of these measurements suggest that the timescale of a single‐eruption cycle is composed of four successive eruption types with two recharge periods ranging from 30 to 40 h. Current eruption patterns exhibit a bimodal distribution, but these patterns evolved during past 80 years. The field observation suggests that the geyser's eruptions are regular and predictable and reflect pressure and temperature changes resulting from Joule–Thomson cooling and endothermic CO2 exsolution. The eruption interval between multiple small‐scale eruptions is a direct indicator of the subsequent large‐scale eruption.  相似文献   

6.
High mole fraction CO2 gases pose a significant risk to hydrocarbon exploration in some areas. The generation and movement of CO2 are also of scientific interest, particularly because CO2 is an important greenhouse gas. We have developed a model of CO2 generation, migration, and titration in basins in which a high mole fraction CO2 gas is generated by the breakdown of siderite (FeCO3) and magnesite (MgCO3) where parts of the basin are being heated above approximately 330°C. The CO2 reacts with Fe‐, Mg‐, and Ca‐silicates as it migrates upward and away from the generation zone (CO2‐kitchen). Near the kitchen, where the Fe‐, Mg‐, and Ca‐silicates have been titrated and destroyed by previous packets of migrating CO2, gas moves upward without lowering its CO2 mole fraction. Further on, where Fe‐ and Mg‐silicates are still present but Ca‐silicates are absent in the sediments, the partial pressure of CO2 is constrained to 0.1–30 bars and reservoirs contain a few mole percent CO2 as described by Smith & Ehrenberg (1989) . Still further from the source, where Ca‐silicates have not been titrated, partial pressure of CO2 in migrating methane gas are orders of magnitude lower. A 2D numerical model of CO2 generation, migration, and titration quantifies these buffer relations and makes predictions of CO2 risk in the South China Sea that are compatible with exploration experience. Reactive CO2 transport models of the kind described could prove useful in determining how gases migrate in faulted sedimentary basins.  相似文献   

7.
Eastern Sicily (southern Italy) is characterised by the presence of many natural gas emissions (mofettes, mud volcanoes). These gases are mostly carbon dioxide and methane, with minor amounts of helium, hydrogen, carbon monoxide and hydrocarbons. In this study, the extent and orientation of soil gas anomalies (He and CO2) were investigated on a wide area (approximately 110 km2) located just SW of Mt. Etna. From a structural point of view, this area lays on a typical foredeep–foreland system that marks the boundary between the southern part of the Eurasian plate and the northern part of the African plate in the central Mediterranean. No tectonic structure was revealed in this area by surface geological surveys. Very high soil emissions were found, and their spatial pattern reveals the existence of some active faults all directed about N50°E. This direction coincides with that of two major fault systems that cut eastern Sicily and are evident, respectively, NE and SW of the study area. Soil gas data suggest that these fault systems are the expression of a single continuous structural line which is probably responsible for the past and present magma uprise in eastern Sicily. Isotopic values of carbon of CO2 suggest a minor contribution of organic carbon. Moreover, in the highest degassing sites the isotopic values of He found in association with CO2 (He abundance = 11–70 p.p.m.; R/Ra between 6.0 and 6.2) suggest that both gases are mantle derived. The extent of the areas affected by high gas emissions and the amounts of deep CO2 emitted in the investigated area (several hundred tonnes per day) may provide additional supporting evidence of a mantle upwelling taking place beneath this region.  相似文献   

8.
This paper describes the design features and capabilities of a portable automated in‐situ closed chamber (ISCC) for the quantification of CO2 fluxes in dryland soils where both photosynthetic and respiratory components may be associated with a cyanobacterial crust. The processes of CO2 flux in dryland soils are briefly described in order to clarify the conditions that make quantification of these fluxes problematic. The instrumentation currently available for in‐situ soil CO2 flux measurements is then reviewed demonstrating their inadequacies for the dryland environment. The ISCC described here is a member of the closed or enrichment class of soil respiration chambers. The ISCC, however, features an optical window possessing high (>90%) transmission in the photosynthetic active region (PAR) of the solar irradiance spectrum, permitting observations of photosynthesis. The ISCC possesses automatic venting and purging so that gaseous concentrations inside the chamber do not change from ambient sufficiently to significantly affect diffusion. The ISCC features both active and passive cooling employing internal solid‐state Peltier coolers and external aluminised Mylar respectively. This avoids severe disturbance of the microclimate within the chamber due to admission of high fluxes of PAR and permits in‐situ operation under a wide range of ambient field temperatures (~ ?5 to 40°C). Sensors internal to the chamber monitor temperature, relative humidity, irradiance and pressure. In this implementation the ISCC is coupled to a portable gas chromatograph (Agilent GC‐3000) to sample the chamber atmosphere. Indicative data for Kalahari Sand soils of Botswana are presented as an illustration of the general performance characteristics.  相似文献   

9.
G. Etiope  A. Ionescu 《Geofluids》2015,15(3):438-452
Metal‐catalysed CO2 hydrogenation is considered a source of methane in serpentinized (hydrated) igneous rocks and a fundamental abiotic process germane to the origin of life. Iron, nickel, chromium and cobalt are the catalysts typically employed in hydrothermal simulation experiments to obtain methane at temperatures >200°C. However, land‐based present‐day serpentinization and abiotic gas apparently develop below 100°C, down to approximately 40–50°C. Here, we document considerable methane production in thirteen CO2 hydrogenation experiments performed in a closed dry system, from 20 to 90°C and atmospheric pressure, over 0.9–122 days, using concentrations of non‐pretreated ruthenium equivalent to those occurring in chromitites in ophiolites or igneous complexes (from 0.4 to 76 mg of Ru, equivalent to the amount occurring approximately in 0.4–760 kg of chromitite). Methane production increased with time and temperature, reaching approximately 87 mg CH4 per gram of Ru after 30 days (2.9 mgCH4/gru/day) at 90°C. At room temperature, CH4 production rate was approximately three orders of magnitude lower (0.003 mgCH4/gru/day). We report the first stable carbon and hydrogen isotope ratios of abiotic CH4 generated below 100°C. Using initial δ13CCO2 of ‐40‰, we obtained room temperature δ13CCH4 values as 13C depleted as ?142‰. With time and temperature, the C‐isotope separation between CO2 and CH4 decreased significantly and the final δ13CCH4 values approached that of initial δ13CCO2. The presence of minor amounts of C2‐C6 hydrocarbons is consistent with observations in natural settings. Comparative experiments at the same temperatures with iron and nichel catalysts did not generate CH4. Ru‐enriched chromitites could potentially generate methane at low temperatures on Earth and on other planets.  相似文献   

10.
Numerical simulations of multiphase CO2 behavior within faulted sandstone reservoirs examine the impact of fractures and faults on CO2 migration in potential subsurface injection systems. In southeastern Utah, some natural CO2 reservoirs are breached and CO2‐charged water flows to the surface along permeable damage zones adjacent to faults; in other sites, faulted sandstones form barriers to flow and large CO2‐filled reservoirs result. These end‐members serve as the guides for our modeling, both at sites where nature offers ‘successful’ storage and at sites where leakage has occurred. We consider two end‐member fault types: low‐permeability faults dominated by deformation‐band networks and high‐permeability faults dominated by fracture networks in damage zones adjacent to clay‐rich gouge. Equivalent permeability (k) values for the fault zones can range from <10?14 m2 for deformation‐band‐dominated faults to >10?12 m2 for fracture‐dominated faults regardless of the permeability of unfaulted sandstone. Water–CO2 fluid‐flow simulations model the injection of CO2 into high‐k sandstone (5 × 10?13 m2) with low‐k (5 × 10?17 m2) or high‐k (5 × 10?12 m2) fault zones that correspond to deformation‐band‐ or fracture‐dominated faults, respectively. After 500 days, CO2 rises to produce an inverted cone of free and dissolved CO2 that spreads laterally away from the injection well. Free CO2 fills no more than 41% of the pore space behind the advancing CO2 front, where dissolved CO2 is at or near geochemical saturation. The low‐k fault zone exerts the greatest impact on the shape of the advancing CO2 front and restricts the bulk of the dissolved and free CO2 to the region upstream of the fault barrier. In the high‐k aquifer, the high‐k fault zone exerts a small influence on the shape of the advancing CO2 front. We also model stacked reservoir seal pairs, and the fracture‐dominated fault acts as a vertical bypass, allowing upward movement of CO2 into overlying strata. High‐permeability fault zones are important pathways for CO2 to bypass unfaulted sandstone, which leads to reduce sequestration efficiency. Aquifer compartmentalization by low‐permeability fault barriers leads to improved storativity because the barriers restrict lateral CO2 migration and maximize the volume and pressure of CO2 that might be emplaced in each fault‐bound compartment. As much as a 3.5‐MPa pressure increase may develop in the injected reservoir in this model domain, which under certain conditions may lead to pressures close to the fracture pressure of the top seal.  相似文献   

11.
W. van BERK    H.-M. SCHULZ  Y. FU 《Geofluids》2009,9(4):253-262
Different feldspar types control complex hydrogeochemical processes in hydrocarbon‐bearing siliciclastic reservoirs, which have undergone different degrees of degradation. To test such processes generically, carbon dioxide equilibria and mass transfers induced by organic–inorganic interactions have been modelled for different hydrogeochemical scenarios. The approach is based on and compared with data from the Norwegian continental shelf ( Smith & Ehrenberg 1989 ) and assumes local thermodynamic equilibrium among solids and fluids. Equilibrating mineral assemblages (different feldspar types, quartz, kaolinite, calcite) are based on the primary reservoir composition. Equilibration and coupled mass transfer were triggered by the addition and reaction of different amounts of CO2, CH4 and H2 (plus acetic acid) at temperatures between 50 and 95°C (323 and 368 K). These components occur in oil fields as products of anaerobic bacterial degradation, hydrolytic disproportionation of hydrocarbons and/or thermal maturation of kerogen. We apply two different computer codes and two different thermodynamic data bases to calculate the results. Reaction of 0.32–0.6 mol CO2, 0.16–0.3 mol CH4 and 0.8–1.5 mol H2 with K‐feldspar, quartz, kaolinite and calcite in 1 l of pore water results in modelled values of 0.3–2.3 mol% CO2 in a multicomponent gas phase that resembles measured data (0.2–1.5 mol%). Similar CO2 contents result from acetic acid addition (CO2, CH4, H2 + 0.016 mol CH3COOH). Equilibration with albite or anorthite reduces the release of CO2 into the multicomponent gas phase dramatically, by 1 or 4 orders of magnitude compared with the equilibration with K‐feldspar. Minor differences in the modelled CO2 content (0.1–0.2 mol%) result from calculations with different computer codes if the same thermodynamic data base is applied. Relevant differences (up to 1.9 mol% CO2) result from calculations using different thermodynamic data bases.  相似文献   

12.
To quantify and rank gas wettability of coal as a key parameter affecting the extent of CO2 sequestration in coal and CH4 recovery from coal, we developed a contact angle measuring system based on a captive gas bubble technique. We used this system to study the gas wetting properties of an Australian coal from the Sydney Basin. Gas bubbles were generated and captivated beneath a coal sample within a distilled water‐filled (pH 5.7) pressurised cell. Because of the use of distilled water, and the continuous dissolution and shrinkage of the gas bubble in water during measurement, the contact angles measured correspond to a ‘transient receding’ contact angle. To take into account the mixed‐gas nature (CO2, CH4, and to a lesser extent N2) of coal seam gas in the basin, we evaluated the relative wettability of coal by CH4, CO2 and N2 gases in the presence of water. Measurements were taken at various pressures of up to 15 MPa for CH4 and N2, and up to 6 MPa for CO2 at a constant temperature of 22°C. Overall, our results show that CO2 wets coal more extensively than CH4, which in turn wets coal slightly more than N2. Moreover, the contact angle reduces as the pressure increases, and becomes < 90° at various pressures depending on the gas type. In other words, all three gases wet coal better than water under sufficiently high pressure.  相似文献   

13.
The Central Apennines are affected by frequent earthquakes of moderate magnitude that occur mainly within the upper part of the crust at depths of <15 km. A large number of cold gas emissions that are rich in CO2 are also found in the region. One particular vent with a high rate of degassing was equipped with a sensor to measure flow rates, which were recorded for a number of different periods between 2005 and 2010. Factors that could affect potentially CO2 flow rates include barometric pressure, atmospheric temperature, precipitation and local seismicity. Our analysis indicates that the periods of anomalous flow rate were related not to the environmental factors but probably to the deformative processes of the crust associated with the local seismicity. Local seismic events as expression of geodynamic processes occurred always before and during these anomalous gas flow periods. This correlation exists only for events that occurred eastwards of the gas emission site close to the Martana fault zone. We herein consider this correlation as indication for a continuous interaction between the field of static strain and the deep fluid pressure. An approximation of the fluid pressure transmission towards the gas emission site gives reasonable values of 1–10 m2 sec?1. To make comparisons with the long‐term effects of the static strain, we also recorded the short‐term effects of the dynamic release of strain induced by the series of strong earthquakes that took place in L’Aquila in 2009. We detected a significant anomalous flow rate that occurred at the same time as this seismic sequence, during which widespread degassing was induced around the focal zone.  相似文献   

14.
Sampling of fluids in deep boreholes is challenging because of the necessity of minimizing external contamination and maintaining sample integrity during recovery. The U‐tube sampling methodology was developed to collect large volume, multiphase samples at in situ pressures. As a permanent or semi‐permanent installation, the U‐tube can be used for rapidly acquiring multiple samples or it may be installed for long‐term monitoring applications. The U‐tube was first deployed in Liberty County, TX to monitor crosswell CO2 injection as part of the Frio CO2 sequestration experiment. Analysis of gases (dissolved or separate phase) was performed in the field using a quadrupole mass spectrometer, which served as the basis for determining the arrival of the CO2 plume. The presence of oxygen and argon in elevated concentrations, along with reduced methane concentration, indicates sample alteration caused by the introduction of surface fluids during borehole completion. Despite producing the well to eliminate non‐native fluids, measurements demonstrate that contamination persists until the immiscible CO2 injection swept formation fluid into the observation wellbore.  相似文献   

15.
We characterize the evolution of U.S. carbon dioxide (CO2) emissions using an index number decomposition technique which partitions the 1963–2008 growth of states’ energy‐related CO2 into changes in five driving factors: the emission intensity of energy use, the energy intensity of economic activity, the composition of states’ output, per capita income and population. Compositional change and declining energy intensity attenuate emissions growth, but their impacts are offset by increasing population and income. Despite absolute interstate divergence in both emissions and their precursors, states’ emission‐ and energy intensities—and ultimately, CO2—appear to be stochastically converging. We assess the implications of these trends using a novel vector autoregression (VAR) emission forecasting technique based on our index numbers. The resulting emission projections are comparable to, but generally exceed, those forecast by the 2010 EIA Annual Energy Outlook.  相似文献   

16.
F. H. Weinlich 《Geofluids》2014,14(2):143-159
The ascent of magmatic carbon dioxide in the western Eger (Oh?e) Rift is interlinked with the fault systems of the Variscian basement. In the Cheb Basin, the minimum CO2 flux is about 160 m3 h?1, with a diminishing trend towards the north and ceasing in the main epicentral area of the Northwest Bohemian swarm earthquakes. The ascending CO2 forms Ca‐Mg‐HCO3 type waters by leaching of cations from the fault planes and creates clay minerals, such as kaolinite, as alteration products on affected fault planes. These mineral reactions result in fault weakness and in hydraulically interconnected fault network. This leads to a decrease in the friction coefficient of the Coulomb failure stress (CFS) and to fault creep as stress build‐up cannot occur in the weak segments. At the transition zone in the north of the Cheb Basin, between areas of weak, fluid conductive faults and areas of locked faults with frictional strength, fluid pressure can increase resulting in stress build‐up. This can trigger strike‐slip swarm earthquakes. Fault creep or movements in weak segments may support a stress build‐up in the transition area by transmitting fluid pressure pulses. Additionally to fluid‐driven triggering models, it is important to consider that fluids ascending along faults are CO2‐supersaturated thus intensifying the effect of fluid flow. The enforced flow of CO2‐supersaturated fluids in the transitional zone from high to low permeability segments through narrowings triggers gas exsolution and may generate pressure fluctuations. Phase separation starts according to the phase behaviour of CO2‐H2O systems in the seismically active depths of NW Bohemia and may explain the vertical distribution of the seismicity. Changes in the size of the fluid transport channels in the fault systems caused, or superimposed, by fault movements, can produce fluid pressure increases or pulses, which are the precondition for triggering fluid‐induced swarm earthquakes.  相似文献   

17.
The quantitative assessment of COH fluids is crucial in modeling geological processes. The composition of fluids, and in particular their H2O/CO2 ratio, can influence the melting temperatures, the location of hydration or carbonation reactions, and the solute transport capability in several rock systems. In the scientific literature, COH fluids speciation has been generally assumed on the basis of thermodynamic calculations using equations of state of simple H2O–nonpolar gas systems (e.g., H2O–CO2–CH4). Only few authors dealt with the experimental determination of high‐pressure COH fluid species at different conditions, using diverse experimental and analytical approaches (e.g., piston cylinder + capsule piercing + gas chromatography/mass spectrometry; cold seal + silica glass capsules + Raman). In this contribution, we present a new methodology for the synthesis and the analysis of COH fluids in experimental capsules, which allows the quantitative determination of volatiles in the fluid by means of a capsule‐piercing device connected to a quadrupole mass spectrometer. COH fluids are synthesized starting from oxalic acid dihydrate at = amb and = 250°C in single capsules heated in a furnace, and at = 1 GPa and = 800°C using a piston‐cylinder apparatus and the double‐capsule technique to control the redox conditions employing the rhenium–rhenium oxide oxygen buffer. A quantitative analysis of H2O, CO2, CH4, CO, H2, O2, and N2 along with associated statistical errors is obtained by linear regression of the m/z data of the sample and of standard gas mixtures of known composition. The estimated uncertainties are typically <1% for H2O and CO2, and <5% for CO. Our results suggest that the COH fluid speciation is preserved during and after quench, as the experimental data closely mimic the thermodynamic model both in terms of bulk composition and fluid speciation.  相似文献   

18.
Shale gas reservoirs like coalbed methane (CBM) reservoirs are promising targets for geological sequestration of carbon dioxide (CO2). However, the evolution of permeability in shale reservoirs on injection of CO2 is poorly understood unlike CBM reservoirs. In this study, we report measurements of permeability evolution in shales infiltrated separately by nonsorbing (He) and sorbing (CO2) gases under varying gas pressures and confining stresses. Experiments are completed on Pennsylvanian shales containing both natural and artificial fractures under nonpropped and propped conditions. We use the models for permeability evolution in coal (Journal of Petroleum Science and Engineering, Under Revision) to codify the permeability evolution observed in the shale samples. It is observed that for a naturally fractured shale, the He permeability increases by approximately 15% as effective stress is reduced by increasing the gas pressure from 1 MPa to 6 MPa at constant confining stress of 10 MPa. Conversely, the CO2 permeability reduces by a factor of two under similar conditions. A second core is split with a fine saw to create a smooth artificial fracture and the permeabilities are measured for both nonpropped and propped fractures. The He permeability of a propped artificial fracture is approximately 2‐ to 3fold that of the nonpropped fracture. The He permeability increases with gas pressure under constant confining stress for both nonpropped and propped cases. However, the CO2 permeability of the propped fracture decreases by between one‐half to one‐third as the gas pressure increases from 1 to 4 MPa at constant confining stress. Interestingly, the CO2 permeability of nonpropped fracture increases with gas pressure at constant confining stress. The permeability evolution of nonpropped and propped artificial fractures in shale is found to be similar to those observed in coals but the extent of permeability reduction by swelling is much lower in shale due to its lower organic content. Optical profilometry is used to quantify the surface roughness. The changes in surface roughness indicate significant influence of proppant indentation on fracture surface in the shale sample. The trends of permeability evolution on injection of CO2 in coals and shales are found analogous; therefore, the permeability evolution models previously developed for coals are adopted to explain the permeability evolution in shales.  相似文献   

19.
A gas geochemical precursor anomaly was identified prior to the October 2008 Nový Kostel (Czech Republic) earthquake swarm with a peak magnitude ML of 3.8. This anomaly was observed as a deviation of CO2 concentrations from the long‐term annual CO2 concentration trend in the gas extracted from the scree at the Nový Kostel and Old?i?ská gas monitoring stations, which are directly above the Plesná valley‐Po?átky and Mariánské Lázně fault systems. Both sites are located within the major focal zone of the NW Bohemian swarm earthquake region at the northern edge of the Cheb Basin. A decrease in CO2 concentration started at Nový Kostel in September 2008, 17 days before the swarm, opposite to the usually increasing annual trend in the autumn period, and ended with a nearly coseismic drop immediately prior to the onset of the first swarm. The CO2 concentrations at Old?i?ská, deviating from the annual trend, did not further increase after August 2008. The calculated horizontal strain field, based on the data of two permanent Global Navigation Satellite Systems stations, proved there was horizontal compression in this period. The increasing compression along the Plesná valley‐Po?átky and Mariánské Lázně fault systems during the stress build‐up reduced the fault permeability prior to this earthquake swarm as indicated by the decrease in CO2 concentration. The 17‐day duration of the earthquake precursor at Nový Kostel and about 65 days at Old?i?ská lie within the range of the precursor times that are hypothesized worldwide for an ML = 3.8 earthquake. The nature of earthquake precursors and their origin are discussed, for example, as an indication of changed fault permeability by stress build‐up in the case of the Nový Kostel swarm earthquake precursor or as fault opening in other cases.  相似文献   

20.
Tourism produces an increasing share in global greenhouse gas (GHG) emissions. These are mostly derived from transport emissions, and long-haul air travel in particular. Short-haul domestic tourism is believed by some to be a potential substitute for long-haul tourism. Using the example of Finland this paper examines the extent to which domestic second home tourism can substitute for other leisure trips and therefore contribute to reductions of travel-generated GHG emissions. Survey data are used to evaluate the CO2 emissions caused by travel to domestic second homes, and to create statistical models that verify if the owners of domestic second homes travel to other leisure destinations less frequently than others, and if they cause less emissions by their leisure mobility than others with comparable economic and demographic background. We find that although the owners and users of domestic second homes travel for other leisure purposes less frequently than others, this does not mean their leisure mobility generates less emissions. Overall, owners of second homes produce significantly more CO2 by their leisure mobility than non-owners. The use of second homes does not seem to be a substitute for high emission long-haul travels, but rather a part of an overall highly mobile leisure lifestyle. It is therefore necessary to better understand and influence the entire range of individual mobility behaviours in order to reduce travel-related GHG emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号