首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
L. M. CATHLES 《Geofluids》2007,7(2):209-226
A fundamental change in the nature of sub‐water table fluid flow occurred at roughly the Proterozoic–Phanerozoic boundary when organic matter began to be buried in sufficient quantities that nonaqueous fluids could occupy a significant fraction of the pore space. This allowed the formation of remarkably durable capillary seals that could trap gas in large portions (hundreds of kilometers) of a basin for hundreds of millions of years. Gas loss from these gas zones can be highly dynamic, especially during gas generation. Under the right circumstances, hundreds of cubic kilometers of gas can be rapidly discharged into adjacent permeable aquifers. In Pennsylvanian/Permian time, the Arkoma Basin may have repeatedly discharged such volumes of gas into the very permeable Cambrian sandstone and karstic carbonate aquifers of the mid‐continent of the United States. This could have displaced brines rapidly enough to form the Mississippi Valley‐type (MVT) lead–zinc deposits of this age that are associated with the Arkoma Basin, heating them only briefly as required by maturity indicators. Sea level rise accompanying the melting of Permian continental glaciers may have triggered the gas expulsion events. This radically new mechanism for the formation of MVT deposits is just one example of the nonlinear dynamics of gas accumulations that are possible since Late Proterozoic time.  相似文献   

2.
The Trèves zinc–lead deposit is one of several Mississippi Valley‐type (MVT) deposits in the Cévennes region of southern France. Fluid inclusion studies show that the ore was deposited at temperatures between approximately 80 and 150°C from a brine that derived its salinity mainly from the evaporation of seawater past halite saturation. Lead isotope studies suggest that the metals were extracted from local basement rocks. Sulfur isotope data and studies of organic matter indicate that the reduced sulfur in the ores was derived from the reduction of Mesozoic marine sulfate by thermochemical sulfate reduction or bacterially mediated processes at a different time or place from ore deposition. The large range of δ34S values determined for the minerals in the deposit (12.2–19.2‰ for barite, 3.8–13.8‰ for sphalerite and galena, and 8.7 to ?21.2‰ for pyrite), are best explained by the mixing of fluids containing different sources of sulfur. Geochemical reaction path calculations, based on quantitative fluid inclusion data and constrained by field observations, were used to evaluate possible precipitation mechanisms. The most important precipitation mechanism was probably the mixing of fluids containing different metal and reduced sulfur contents. Cooling, dilution, and changes in pH of the ore fluid probably played a minor role in the precipitation of ores. The optimum results that produced the most metal sulfide deposition with the least amount of fluid was the mixing of a fluid containing low amounts of reduced sulfur with a sulfur‐rich, metal poor fluid. In this scenario, large amounts of sphalerite and galena are precipitated, together with smaller quantities of pyrite precipitated and dolomite dissolved. The relative amounts of metal precipitated and dolomite dissolved in this scenario agree with field observations that show only minor dolomite dissolution during ore deposition. The modeling results demonstrate the important control of the reduced sulfur concentration on the Zn and Pb transport capacity of the ore fluid and the volumes of fluid required to form the deposit. The studies of the Trèves ores provide insights into the ore‐forming processes of a typical MVT deposit in the Cévennes region. However, the extent to which these processes can be extrapolated to other MVT deposits in the Cévennes region is problematic. Nevertheless, the evidence for the extensive migration of fluids in the basement and sedimentary cover rocks in the Cévennes region suggests that the ore forming processes for the Trèves deposit must be considered equally viable possibilities for the numerous fault‐controlled and mineralogically similar MVT deposits in the Cévennes region.  相似文献   

3.
Topography‐driven flow is normally considered to be the dominant groundwater flow system in uplifted sedimentary basins. In the U.S. midcontinent region east of the Rocky Mountains, the presence of brines derived from dissolution of halite suggests that significant topography‐driven flushing has occurred to remove older brines that presumably formed concurrently with Permian evaporites in the basin. However, the presence of evaporites and brines in the modern basin suggests that buoyancy‐driven flow could limit topography‐driven flushing significantly. Here we used numerical models of variable‐density fluid flow, halite dissolution, solute transport, and heat transport to quantify flow patterns and brine migration. Results indicate the coexistence of large‐scale topography‐ and buoyancy‐driven flow. Buoyancy‐driven flow and low permeability evaporites act to isolate brines, and the residence time of the brines was found to be quite long, at least 50 Myr. The modern distribution of salinity appears to reflect near‐steady‐state conditions. Results suggest that flushing of original evaporatively‐concentrated brines occurred tens of millions of years ago, possibly concurrent with maximum uplift ca. 60 Ma. Simulations also suggest that buoyancy‐driven convection could drive chemical exchange with crystalline basement rocks, which could supply significant Ca2+, Sr2+, and metals to brines.  相似文献   

4.
This paper presents a suite of two‐dimensional mathematical models of basin‐scale groundwater flow and heat transfer for the middle Proterozoic Midcontinent Rift System. The models were used to assess the hydrodynamic driving mechanisms responsible for main‐stage stratiform copper mineralization of the basal Nonesuch Formation during the post‐volcanic/pre‐compressional phase of basin evolution. Results suggest that compaction of the basal aquifer (Copper Harbor Formation), in response to mechanical loading during deposition of the overlying Freda Sandstone, generated a pulse of marginward‐directed, compaction‐driven discharge of cupriferous brines from within the basal aquifer. The timing of this pulse is consistent with the radiometric dates for the timing of mineralization. Thinning of the basal aquifer near White Pine, Michigan, enhanced stratiform copper mineralization. Focused upward leakage of copper‐laden brines into the lowermost facies of the pyrite‐rich Nonesuch Formation resulted in copper sulfide mineralization in response to a change in oxidation state. Economic‐grade mineralization within the White Pine ore district is a consequence of intense focusing of compaction‐driven discharge, and corresponding amplification of leakage into the basal Nonesuch Formation, where the basal aquifer thins dramatically atop the Porcupine Mountains volcanic structure. Equilibrium geochemical modeling and mass‐balance calculations support this conclusion. We also assessed whether topography and density‐driven flow systems could have caused ore genesis at White Pine. Topography‐driven flow associated with the Ottawan orogeny was discounted because it post‐dates main‐stage ore genesis and because recent seismic interpretations of basin inversion indicates that basin geometry would not be conductive to ore genesis. Density‐driven flow systems did not produce focused discharge in the vicinity of the White Pine ore district.  相似文献   

5.
Pleistocene melting of kilometer‐thick continental ice sheets significantly impacted regional‐scale groundwater flow in the low‐lying stable interiors of the North American and Eurasian cratons. Glacial meltwaters penetrated hundreds of meters into the underlying sedimentary basins and fractured crystalline bedrock, disrupting relatively stagnant saline fluids and creating a strong disequilibrium pattern in fluid salinity. To constrain the impact of continental glaciation on variable density fluid flow, heat and solute transport in the Michigan Basin, we constructed a transient two‐dimensional finite‐element model of the northern half of the basin and imposed modern versus Pleistocene recharge conditions. The sag‐type basin contains up to approximately 5 km of Paleozoic strata (carbonates, siliciclastics, and bedded evaporites) overlain by a thick veneer (up to 300 m) of glacial deposits. Formation water salinity increases exponentially from <0.5 g l?1 total dissolved solids (TDS) near the surface to >350 g l?1 TDS at over 800 m depth. Model simulations show that modern groundwater flow is primarily restricted to shallow glacial drift aquifers with discharge to the Great Lakes. During the Pleistocene, however, high hydraulic heads from melting of the Laurentide Ice Sheet reversed regional flow patterns and focused recharge into Paleozoic carbonate and siliciclastic aquifers. Dilute waters (<20 g l?1 TDS) migrated approximately 110 km laterally into the Devonian carbonate aquifers, significantly depressing the freshwater‐saline water mixing zones. These results are consistent with 14C ages and oxygen isotope values of confined groundwaters in Devonian carbonates along the basin margin, which reflect past recharge beneath the Laurentide Ice Sheet (14–50 ka). Constraining the paleohydrology of glaciated sedimentary basins, such as the Michigan Basin, is important for determining the source and residence times of groundwater resources, in addition to resolving geologic forces responsible for basinal‐scale fluid and solute migration.  相似文献   

6.
We model pore‐pressure diffusion caused by pressurized waste‐fluid injection at two nearby wells and then compare the buildup of pressure with the observed initiation and migration of earthquakes during the early part of the 2010–2011 Guy–Greenbrier earthquake swarm. Pore‐pressure diffusion is calculated using MODFLOW 2005 that allows the actual injection histories (volume/day) at the two wells to diffuse through a fractured and faulted 3D aquifer system representing the eastern Arkoma basin. The aquifer system is calibrated using the observed water‐level recovery following well shut‐in at three wells. We estimate that the hydraulic conductivities of the Boone Formation and Arbuckle Group are 2.2 × 10?2 and 2.03 × 10?3 m day?1, respectively, with a hydraulic conductivity of 1.92 × 10?2 m day?1 in the Hunton Group when considering 1.72 × 10?3 m day?1 in the Chattanooga Shale. Based on the simulated pressure field, injection near the relatively conductive Enders and Guy–Greenbrier faults (that hydraulically connect the Arbuckle Group with the underlying basement) permits pressure diffusion into the crystalline basement, but the effective radius of influence is limited in depth by the vertical anisotropy of the hydraulic diffusivity. Comparing spatial/temporal changes in the simulated pore‐pressure field to the observed seismicity suggests that minimum pore‐pressure changes of approximately 0.009 and 0.035 MPa are sufficient to initiate seismic activity within the basement and sedimentary sections of the Guy–Greenbrier fault, respectively. Further, the migration of a second front of seismicity appears to follow the approximately 0.012 MPa and 0.055 MPa pore‐pressure fronts within the basement and sedimentary sections, respectively.  相似文献   

7.
J. X. LI  G. M. LI  K. Z. QIN  B. XIAO 《Geofluids》2011,11(2):134-143
The Duobuza porphyry copper–gold deposit (proven Cu resources of 2.7 Mt, 0.94% Cu and 13 t gold, 0.21 g t?1 Au) is located at the northern margin of the Bangong‐Nujiang suture zone separating the Qiangtang and Lhasa Terranes. The major ore‐bearing porphyry consists of granodiorite. The alteration zone extends from silicification and potassic alteration close to the porphyry stock to moderate argillic alteration and propylitization further out. Phyllic alteration is not well developed. Sericite‐quartz veins only occur locally. High‐temperature, high‐salinity fluid inclusions were observed in quartz phenocrysts and various quartz veins. These fluid inclusions are characterized by sylvite dissolution between 180 and 360°C and halite dissolution between 240 and 540°C, followed by homogenization through vapor disappearance between 620 and 960°C. Daughter minerals were identified by SEM as chalcopyrite, halite, sylvite, rutile, K–feldspar, and Fe–Mn‐chloride. They indicate that the fluid is rich in ore‐forming elements and of high oxidation state. The fluid belongs to a complex hydrothermal system containing H2O – NaCl – KCl ± FeCl2 ± CaCl2 ± MnCl2. With decreasing homogenization temperature, the fluid salinity tends to increase from 34 to 82 wt% NaCl equiv., possibly suggesting a pressure or Cl/H2O increase in the original magma. No coexisting vapor‐rich fluid inclusions with similar homogenization temperatures were found, so the brines are interpreted to have formed by direct exsolution from magma rather than trough boiling off of a low‐salinity vapor. Estimated minimum pressure of 160 MPa imply approximately 7‐km depth. This indicates that the deposit represents an orthomagmatic end member of the porphyry copper deposit continuum. Two key factors are proposed for the fluid evolution responsible for the large size of the gold‐rich porphyry copper deposit of Duobuza: (i) ore‐forming fluids separated early from the magma, and (ii) the hydrothermal fluid system was of magmatic origin and highly oxidized.  相似文献   

8.
The Jian copper deposit, located on the eastern edge of the Sanandaj–Sirjan metamorphic zone, southwest of Iran, is contained within the Surian Permo‐Triassic volcano‐sedimentary complex. Retrograde metamorphism resulted in three stages of mineralization (quartz ± sulfide veins) during exhumation of the Surian metamorphic complex (Middle Jurassic time; 159–167 Ma), and after the peak of the metamorphism (Middle to Late Triassic time; approximately 187 Ma). The early stage of mineralization (stage 1) is related to a homogeneous H2O–CO2 (XCO2 > 0.1) fluid characterized by moderate salinity (<10 wt.% NaCl equivalent) at high temperature and pressure (>370°C, >3 kbar). Early quartz was followed by small amounts of disseminated fine‐grained pyrite and chalcopyrite. Most of the main‐ore‐stage (stage 2) minerals, including chalcopyrite, pyrite and minor sphalerite, pyrrhotite, and galena, precipitated from an aqueous‐carbonic fluid (8–18 wt.% NaCl equivalent) at temperatures ranging between 241 and 388°C during fluid unmixing process (CO2 effervescence). Fluid unmixing in the primary carbonaceous fluid at pressures of 1.5–3 kbar produced a high XCO2 (>0.05) and a low XCO2 (<0.01) aqueous fluid in ore‐bearing quartz veins. Oxygen and hydrogen isotope compositions suggest mineralization by fluids derived from metamorphic dehydration (δ18Ofluid = +7.6 to +10.7‰ and δD = ?33.1 to ?38.5‰) during stage 2. The late stage (stage 3) is related to a distinct low salinity (1.5–8 wt.% NaCl equivalent) and temperatures of (120–230°C) aqueous fluid at pressures below 1.5 kbar and the deposition of post‐ore barren quartz veins. These fluids probably derived from meteoric waters, which circulated through the metamorphic pile at sufficiently high temperatures and acquire the characteristics of metamorphic fluids (δ18Ofluid = +4.7 to +5.1‰ and δD = ?52.3 to ?53.9‰) during waning stages of the postearly Cimmerian orogeny in Surian complex. The sulfide‐bearing quartz veins are interpreted as a small‐scale example of redistribution of mineral deposits by metamorphic fluids. This study suggests that mineralization at the Jian deposit is metamorphogenic in style, probably related to a deep‐seated mesothermal system.  相似文献   

9.
Vitrinite reflectance data from a petroleum exploration well in the northern Upper Rhinegraben show an unusual vertical maturity trend. Above and below a 500 m thick marl layer the vitrinite reflectance levels are consistent with modern, conductive, geothermal gradients. Between about 1000 and 1500 m depth, however, vitrinite reflectance levels are significantly elevated (about 0.6%Ro). This anomaly cannot be explained with one‐dimensional conductive or conductive–convective heat transfer models, and thermal effects of sedimentation or igneous intrusion seem implausible for this geological setting. The thermal anomaly that formed this maturation anomaly must have been hydrothermal in origin, two‐dimensional in nature, and persisted long enough to elevate the vitrinite reflectance values within this marl unit, yet it must have dissipated before the thermal perturbation would have altered the organic matter below and above the unit. In this study, we propose that the vitrinite reflectance anomalies were caused by a transient thermal inversion induced by episodic, lateral flow of hot (130–160°C) groundwater along conductive fractures and bedding planes. Heat flow constraints suggest that fluids must have moved rapidly up a vertical feeder fault from a depth of at least 3.6 km before migrating laterally. To test this hypothesis, we present a suite of simple, idealized mathematical models of groundwater flow, heat transfer, thermal degradation of kerogen and vitrinite systematics to explore the episodic flow that could have produced the observed thermal anomaly. In these simulations, a single, horizontal aquifer is sandwiched between two less permeable units: the total dimensions of the vertical section model are 4 km thick by 10 km long. The top of the aquifer coincides with the position of the observed thermal maturity anomaly in the Rhinegraben. Boundary conditions along the left edge of this aquifer were varied through time to allow for the migration of hot fluids out into the basin. Inflow temperature, horizontal velocity, duration and frequency of flow and thickness of the aquifer were varied. We found that a thermal maturity anomaly could only be produced by a rather restrictive set of hydrothermal conditions. It was possible to produce the observed vitrinite reflectance anomaly by a single hydrothermal flow event of 130°C fluid migrating laterally into the aquifer at a rate of 1 m a?1 for about 10 000 years. The anomaly is spatially confined to near the left edge of the basin, near the feeder fault. If the flow event lasted longer than 100 000 years, then the maturation anomaly disappeared as the lower confining unit approached steady‐state thermal conditions. It is possible that such an event occurred about 5 million years ago in response to increases in fault permeability associated with far field Alpine tectonism.  相似文献   

10.
The source and transport regions of fluidized (transported) breccias outcrop in the Cloncurry Fe‐oxide–Cu–Au district. Discordant dykes and pipes with rounded clasts of metasedimentary calc–silicate rocks and minor felsic and mafic intrusions extend several kilometres upwards and outwards from the contact aureole of the 1530 Ma Williams Batholith into overlying schists and amphibolites. We used analytical equations for particle transport to estimate clast velocities (≥20 m sec?1), approaching volcanic ejecta rates. An abrupt release of overpressured magmatic‐hydrothermal fluid is suggested by the localization of the base of the breccias in intensely veined contact aureoles (at around 10 km, constrained by mineral equilibria), incorporation of juvenile magmatic clasts, the scale and discordancy of the bodies, and the wide range of pressure variation (up to 150 MPa) inferred from CO2 fluid inclusion densities and related decrepitation textures. The abundance of clasts derived from depth, rather than from the adjacent wallrocks, suggests that the pressure in the pipes was sufficient to restrict the inwards spalling of fragments from breccia walls; that is, the breccias were explosive rather than implosive, and some may have vented to the surface. At these depths, such extreme behaviour may have been achieved by release of dissolved fluids from crystallizing magma, in combination with a strongly fractured and fluid‐laden carapace, sitting under a strong, low permeability barrier. The relationship of these breccias to the Ernest Henry iron‐oxide–Cu–Au deposit suggests they may have been sources of fluids or mechanical energy for ore genesis, or alternately provided permeable pathways for later ore fluids.  相似文献   

11.
Metalliferous (Fe–Cu–Pb–Zn) quartz–carbonate–sulphide veins cut greenschist to epidote–amphibolite facies metamorphic rocks of the Dalradian, SW Scottish Highlands, with NE–SW to NW–SE trends, approximately parallel or perpendicular to regional structures. Early quartz was followed by pyrite, chalcopyrite, sphalerite, galena, barite, late dolomite–ankerite and clays. Both quartz–sulphide and carbonate vein mineralisation is associated with brecciation, indicating rapid release of fluid overpressure and hydraulic fracturing. Two distinct mineralising fluids were identified from fluid inclusion and stable isotope studies. High temperature (>350°C) quartz‐precipitating fluids were moderately saline (4.0–12.7 wt.% NaCl equivalent) with low (approximately 0.05). Quartz δ18O (+11.7 to +16.5‰) and sulphide δ34S (?13.6 to ?1.1‰) indicate isotopic equilibrium with host metasediments (rock buffering) and a local metasedimentary source of sulphur. Later, low‐temperature (TH = 120–200°C) fluids, probably associated with secondary carbonate, barite and clay formation, were also moderately saline (3.8–9.1 wt.% NaCl equivalent), but were strongly enriched in 18O relative to host Dalradian lithologies, as indicated by secondary dolomite–ankerite (δ18O = +17.0 to +29.0‰, δ13C = ?1.0 to ?3.0‰). Compositions of carbonate–forming fluids were externally buffered. The veins record the fluid–rock interaction history of metamorphic host rocks during cooling, uplift and later extension. Early vein quartz precipitated under retrograde greenschist facies conditions from fluids probably derived by syn‐metamorphic dehydration of deeper, higher‐grade rocks during uplift and cooling of the Caledonian metamorphic complex. Veins are similar to those of mesothermal veins in younger Phanerozoic metamorphic belts, but are rare in the Scottish Dalradian. Early quartz veins were reactivated by deep penetration of low‐temperature basin fluids that precipitated carbonate and clays in veins and adjacent Dalradian metasediments throughout the SW Highlands, probably in the Permo‐Carboniferous. This event is consistent with paragenetically ambiguous barite with δ34S characteristic of late Palaeozoic basinal brines.  相似文献   

12.
The currently active fluid regime within the outboard region of the Southern Alps, New Zealand was investigated using a combination of field observations, carbon‐ and oxygen‐stable isotopes from fault‐hosted calcites and interpretation of magnetotelluric (MT) data. Active faulting in the region is dominated by NE striking and N striking, oppositely dipping thrust fault pairs. Stable isotopic analyses of calcites hosted within these fault zones range from 10 to 25‰δ18O and from ?33 to 0‰δ13C. These values reflect mixing of three parent fluids: meteoric water, carbon‐exchanged groundwater and minor deeper rock‐exchanged fluids, at temperatures of 10–90°C in the upper 3–4 km of the crust. A broad, ‘U‐shaped’ zone of high electrical conductivity (maximum depth c. 28 km) underlies the central Southern Alps. In the ductile region of the crust, the high‐conductivity zone is subhorizontal. Near‐vertical zones of high conductivity extend upward to the surface on both sides of the conductive zone. On the outboard side of the orogen, the conductive zone reaches the surface coincident with the trace of the active Forest Creek Faults. Near‐surface flow is shown to dominate the outboard region. Topographically driven meteoric water interacts, on a kilometre scale, with either carbon‐exchanged groundwater or directly with organic material within Pliocene gravels, resulting in a distinctive low 13C signal within fault‐hosted calcites of the outboard region. The high‐strain zone in the lower crust focuses the migration of deeply sourced fluids upward to the base of the brittle–ductile transition. Interconnected fluid is imaged as a narrow vertical zone of high conductivity in the upper crust, implying continuous permeability and possibly buoyancy‐driven flow of deeply sourced fluids to higher levels of the crust where they are detected by the isotopic analysis of the fault‐hosted calcites.  相似文献   

13.
Structural, petrographic, and isotopic data for calcite veins and carbonate host‐rocks from the Sevier thrust front of SW Montana record syntectonic infiltration by H2O‐rich fluids with meteoric oxygen isotope compositions. Multiple generations of calcite veins record protracted fluid flow associated with regional Cretaceous contraction and subsequent Eocene extension. Vein mineralization occurred during single and multiple mineralization events, at times under elevated fluid pressures. Low salinity (Tm = ?0.6°C to +3.6°C, as NaCl equivalent salinities) and low temperature (estimated 50–80°C for Cretaceous veins, 60–80°C for Eocene veins) fluids interacted with wall‐rock carbonates at shallow depths (3–4 km in the Cretaceous, 2–3 km in the Eocene) during deformation. Shear and extensional veins of all ages show significant intra‐ and inter‐vein variation in δ18O and δ13C. Carbonate host‐rocks have a mean δ18OV‐SMOW value of +22.2 ± 3‰ (1σ), and both the Cretaceous veins and Eocene veins have δ18O ranging from values similar to those of the host‐rocks to as low as +5 to +6‰. The variation in vein δ13CV‐PDB of ?1 to approximately +6‰ is attributed to original stratigraphic variation and C isotope exchange with hydrocarbons. Using the estimated temperature ranges for vein formation, fluid (as H2O) δ18O calculated from Cretaceous vein compositions for the Tendoy and Four Eyes Canyon thrust sheets are ?18.5 to ?12.5‰. For the Eocene veins within the Four Eyes Canyon thrust sheet, calculated H2O δ18O values are ?16.3 to ?13.5‰. Fluid–rock exchange was localized along fractures and was likely coincident with hydrocarbon migration. Paleotemperature determinations and stable isotope data for veins are consistent with the infiltration of the foreland thrust sheets by meteoric waters, throughout both Sevier orogenesis and subsequent orogenic collapse. The cessation of the Sevier orogeny was coincident with an evolving paleogeographic landscape associated with the retreat of the Western Interior Seaway and the emergence of the thrust front and foreland basin. Meteoric waters penetrated the foreland carbonate thrust sheets of the Sevier orogeny utilizing an evolving mesoscopic fracture network, which was kinematically related to regional thrust structures. The uncertainty in the temperature estimates for the Cretaceous and Eocene vein formation prevents a more detailed assessment of the temporal evolution in meteoric water δ18O related to changing paleogeography. Meteoric water‐influenced δ18O values calculated here for Cretaceous to Eocene vein‐forming fluids are similar to those previously proposed for surface waters in the Eocene, and those observed for modern‐day precipitation, in this part of the Idaho‐Montana thrust belt.  相似文献   

14.
In granitic rocks, fracture networks typically provide pathways for groundwater flow and solute transport that need to be understood to assess the long‐term performance of deep underground storage or disposal facilities such as radioactive waste repositories. However, relatively little is known about the long‐term processes of fracturing and/or the longevity of flow paths (FP) in granitic rocks distributed within orogenic belts. To clarify these issues, Japanese plutons of different ages and in situ fractures in granite at the Mizunami Underground Research Laboratory (MIU) located in central Japan were studied. Detailed structural characterization and geochemical analysis of in situ fracture fillings sampled from a depth of 300 m were carried out to clarify the relationship between fracturing and mineral infilling processes. Different plutons show identical episodes of fracturing and fracture filling, consisting of: brittle tensile fracturing, due to decreasing temperature through the ductile–brittle transition after plutonic intrusion (Stage I); relatively rapid uplifting (ca. a few mm/year) accompanied by hydrothermal water circulation, which produced uncrushed layered mineral fillings (Stage II); and a period of low‐temperature meteoric water circulation following exposure after uplift (Stage III). The parageneses of carbonate mineral fracture fillings and their carbon isotopic compositions (14C, δ13C) show that there were distinct episodes of carbonate mineral precipitation during the rapid uplifting of a pluton. The carbonate minerals that formed during each episode incorporated carbon from a distinct source. The evolution of fillings identified here enables development of a specific model of fracturing and persistence of fluid‐conducting systems in the plutons of the orogenic field.  相似文献   

15.
The calc‐alkaline plutonic complex from Charroux‐Civray (north‐western part of the French Massif Central) displays multiphase hydrothermal alteration. Plutonic rocks, as well as early retrograde Ca–Al silicate assemblages, which have crystallized during cooling and uplifting of the plutonic series, are affected by multiphase chlorite–phengite–illite–carbonate alteration linked to intense pervasive fluid circulation through microfractures. The petrographic study of alteration sequences and their associated fluid inclusions in microfissures of the plutonic rocks, as well as in mineral fillings of the veins, yields a reconstruction of the PTX evolution of the Hercynian basement after the crystallization of the main calc‐alkaline plutonic bodies. This reconstruction covers the uplift of the basement to its exposure and the subsequent burial by Mesozoic sediments. Cooling of the calc‐alkaline plutonic series started at solidus temperatures (~650°C), at a pressure of about 4 kbar (1 bar = 105 N m?2), as indicated by magmatic epidote stability, hornblende barometry and fluid inclusion data. Cooling continued under slightly decreasing pressure during uplift down to 2–3 kbar at 200–280°C (prehnite–pumpellyite paragenesis). Then, a hot geothermal circulation of CO2‐bearing fluids was induced within the calc‐alkaline rocks leading to the formation of greisen‐like mineralizations. During this stage, temperatures around 400–450°C were still high for the inferred depths (~2 kbar). They imply abnormal heat flows and thermal gradients of 60–80°C km?1. The hypothesis of the existence of one large or a succession of smaller peraluminous plutons at depth, supported by geophysical data, suggests that localized heat flows were linked to concealed leucogranite intrusions. As uplift continued, greisen mineralization was subsequently affected by the chlorite–phengite–dolomite assemblage, correlated with aqueous and nitrogen‐bearing fluid circulations in the temperature range of 400–450°C. In a later stage, a continuous temperature decrease at constant pressure (~0.5 kbar) led to the alteration of the dolomite–illite–chlorite type in the 130–250°C temperature range.  相似文献   

16.
Stratiform sediment‐hosted Zn–Pb–Ag mineral deposits constitute about 40% of the Earth's zinc resources ( Allen 2001 ), and in most cases their genesis involves the discharge of basinal brines near or on the seafloor through syndepositional faults ( Sangster 2002 ). From the point of view of base metal exploration, it is therefore essential to identify all possible faults that formerly carried the upwelling ore‐forming solutions during mineralising events. This paper presents a numerical investigation of the relative importance of various physical parameters in controlling fluid discharge, recharge and heat transport in faults. A two‐dimensional, free convection of pure water, hydrogeological model is developed for the McArthur basin in northern Australia based on the surface geology, known stratigraphic and structural relationships and regional geophysical interpretations. Numerical experiments and sensitivity analyses reveal that faults with strong initial heat input, due to depth of penetration or magmatic activity, are the most likely candidates to carry discharge fluids to the sites of metal precipitation. Deeper, wider and more permeable faults are more likely to behave as the fluid discharge pathways, whereas shallow, narrow or less permeable faults act as marine water recharge pathways. Compared with these fault‐related factors, aquifer physical properties are less important in determining fluid flow patterns and the geothermal regime. These results are an important step in understanding hydrothermal fluid flow in sedimentary basins in order to develop effective exploration criteria for the location of stratiform Zn–Pb–Ag deposits.  相似文献   

17.
The Seferihisar–Balçova Geothermal system (SBG) is characterized by complex temperature and hydrochemical anomalies. Previous geophysical and hydrochemical investigations suggest that hydrothermal convection in the faulted areas of the SBG and recharge flow from the Horst may be responsible for the observed patterns. A numerical model of coupled fluid flow and heat transport processes has been built in order to study the possible fluid dynamics of deep geothermal groundwater flow in the SBG. The results support the hypothesis derived from interpreted data. The simulated scenarios provide a better understanding of the geophysical conditions under which the different fluid dynamics develop. When recharge processes are weak, the convective patterns in the faults can expand to surrounding reservoir units or below the seafloor. These fault‐induced drag forces can cause natural seawater intrusion. In the Melange of the Seferihisar Horst, the regional flow is modified by buoyant‐driven flow focused in the series of vertical faults. As a result, the main groundwater divide can shift. Sealing caprocks prevent fault‐induced cells from being overwhelmed by vigorous regional flow. In this case, over‐pressured, blind geothermal reservoirs form below the caprocks. Transient results showed that the front of rising hot waters in faults is unstable: the tip of the hydrothermal plumes can split and lead to periodical temperature oscillations. This phenomenon known as Taylor–Saffman fingering has been described in mid‐ocean ridge hydrothermal systems. Our findings suggest that this type of thermal pulsing can also develop in active, faulted geothermal systems. To some extent, the role of an impervious fault core on the flow patterns has been investigated. Although it is not possible to reproduce basin‐scale transport processes, this first attempt to model deep groundwater geothermal flow in the SBG qualitatively supported the interpreted data and described the different fluid dynamics of the basin. Geofluids (2010) 10 , 388–405  相似文献   

18.
Single‐ and two‐phase (gas/water) fluid transport in tight sandstones has been studied in a series of permeability tests on core plugs of nine tight sandstones of the southern North Sea. Absolute (Klinkenberg‐corrected) gas permeability coefficients (kgas_inf) ranged between 3.8 × 10?16 and 6.2 × 10?19 m2 and decreased with increasing confining pressure (10–30 MPa) by a factor 3–5. Klinkenberg‐corrected (intrinsic) gas permeability coefficients were consistently higher by factors from 1.4 to 10 than permeability coefficients determined with water. Non‐steady‐state two‐phase (He/water) flow experiments conducted up to differential pressures of 10 MPa document the dynamically changing conductivity for the gas phase, which is primarily capillary‐controlled (drainage and imbibition). Effective gas permeability coefficients in the two‐phase flow tests ranged between 1.1 × 10?17 and 2.5 × 10?22 m², corresponding to relative gas permeabilities of 0.03% and 10%. In the early phase of the nonstationary flow regime (before establishment of steady‐state conditions), they may be substantially (>50%) lower. Effective gas permeability measurements are affected by the following factors: (i) Capillary‐controlled drainage/imbibition, (ii) viscous–dynamic effects (iii) and slip flow.  相似文献   

19.
P. W. Cromie  Khin Zaw 《Geofluids》2003,3(2):133-143
Carlin‐type gold deposits in southern China are present in Palaeozoic to Mesozoic siliciclastic and carbonate rocks. The border region of Yunnan, Guizhou and Guangxi Provinces contains gold deposits on the south‐western margin of the Pre‐Cambrian South China Craton in south‐eastern Yunnan Province. The Fu Ning gold deposits host epigenetic, micron‐sized disseminated gold in: (i) Middle Devonian (D1p) black carbonaceous mudstone at the Kuzhubao gold deposit and (ii) fault breccia zones at the contact between Triassic gabbro (β ) and the Devonian mudstone (D1p) at the Bashishan gold deposit. The deposits are associated with zones of intense deformation with enhanced permeability and porosity that focused hydrothermal fluid flow, especially where low‐angle N‐S striking thrust faults are cut by NW striking strike‐slip and/or NE striking normal faults. Major sulphide ore minerals in the Fu Ning gold deposits are pyrite, arsenopyrite, arsenic‐rich pyrite, stibnite and minor iron‐poor sphalerite. Gangue minerals are quartz, sericite, calcite, ankerite and chlorite. Hypogene ore grades range from 1 to 7 g t?1 Au and up to 18 g t?1 Au at the Kuzhubao gold deposit and are generally less than 3 g t?1 Au at the Bashishan gold deposit. Sub‐microscopic gold mineralization is associated with finely disseminated arsenic‐rich pyrite in the Stage III mineral assemblage. Two types of primary fluid inclusions have been recorded: Type I liquid–vapour inclusions with moderate‐to‐high liquid/vapour ratios, and Type II inclusions containing moderate liquid/vapour ratios with CO2 as determined from laser Raman analysis. Temperature of homogenization (Th) data collected from these primary fluid inclusions in gold‐ore Stage III quartz ranged from 180 to 275°C at the Kuzhubao gold deposit and 210 to 330°C at the Bashishan gold deposit. Salinity results indicate that there were possibly two fluids present during gold deposition, including: (i) an early fluid with 0.8–6.5 wt.% NaCl equivalent, similar to salinity in shear‐zone‐hosted gold deposits with metamorphic derived fluids; and (ii) a late fluid with 11.8–13.4 wt.% NaCl equivalent, indicating possible derivation from connate waters and/or brine sources. CO2 and trace CH4 were only detected by laser Raman spectrometry in gold‐ore‐stage primary fluid inclusions. Results of sulphur isotope studies showed that δ34S values for pyrite and arsenopyrite associated with gold‐ore mineralization during Stage III at the Kuzhubao and Bashishan gold deposits are isotopically similar and moderately heavy with a range from +9 to +15 per mil, and also fall into the range of δ34S values reported for Carlin‐type gold deposits. Sulphur isotopes suggest that the Fu Ning gold deposits were formed from connate waters and/or basinal brines. Fluid geochemistry data from the Fu Ning gold deposits suggest a Carlin‐type genetic model, involving fluid mixing between: (i) deep CO2‐rich metamorphic fluids, (ii) moderately saline, reduced connate waters and/or basinal brines; and (iii) evolved meteoric waters.  相似文献   

20.
T. K. KYSER 《Geofluids》2007,7(2):238-257
Sedimentary basins are the largest structures on the surface of our planet and the most significant sources of energy‐related commodities. With time, sedimentary successions in basins normally are subjected to increasingly intense diagenesis that results in differential evolution of basin hydrology. This hydrologic structure is in turn vitally important in determining how and where deposition of metals may occur. Fluids in all basins originate and flow as a result of sedimentological and tectonic events, so that fluid histories should reflect the control of both lithology and tectonism on ore deposition. Sandstone lithologies, in particular, reflect fluid‐flow events because they are normally the major aquifers in basins. However, early cementation results in occlusion of primary permeability in some facies (diagenetic aquitards) whereas in others, permeability develops due to the dissolution of unstable grains (diagenetic aquifers). Particularly for ore deposits in Precambrian basins, identification of paleohydrologic systems during basin evolution requires the integration of data derived from tectonics, sedimentology, stratigraphy, diagenesis, geochemistry and geology. Assessment of all these data is a prerequisite for the ‘holistic basin analysis’ needed to guide the search for basin‐hosted ores. Recent results from the Paleoproterozoic Mt Isa and McArthur basins in northern Australia serve as a template for exploring for mineral deposits in basins. Basinal fluids were saline, 200–300°C and evolved primarily from meteoric water in the Mt Isa Basin and from seawater in the McArthur Basin during burial to depths of 4–12 km. The δDfluid and δ18Ofluid values in these brines were isotopically identical to those in the Zn‐Pb, Cu and U deposits. Geochemical changes of various lithologies during alteration support detrital minerals as the major source of the U, and volcanic units proximal to diagenetic aquifers as a source for the transition metals. Ages of diagenetic phases extracted from aquifer lithologies reveal that fluid migration from the diagenetic aquifers effectively covers the period of formation for U, Zn‐Pb and Cu mineralization, and that the deposits formed in response to tectonic events reflected in the apparent polar wandering path for the area. Sequence stratigraphic analysis and models of fluid flow also indicate that basinal reservoirs were likely sources for the mineralizing fluids. Thus, diagenetic aquifer lithologies were being drained of fluids at the same time as the deposits were forming from fluids that were chemically and isotopically similar, linking diagenesis and fluid events within the basin to the formation of the deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号