首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The behavior of pile foundations in non liquefiable soil under seismic loading is considerably influenced by the variability in the soil and seismic design parameters. Hence, probabilistic models for the assessment of seismic pile design are necessary. Deformation of pile foundation in non liquefiable soil is dominated by inertial force from superstructure. The present study considers a pseudo-static approach based on code specified design response spectra. The response of the pile is determined by equivalent cantilever approach. The soil medium is modeled as a one-dimensional random field along the depth. The variability associated with undrained shear strength, design response spectrum ordinate, and superstructure mass is taken into consideration. Monte Carlo simulation technique is adopted to determine the probability of failure and reliability indices based on pile failure modes, namely exceedance of lateral displacement limit and moment capacity. A reliability-based design approach for the free head pile under seismic force is suggested that enables a rational choice of pile design parameters.  相似文献   

2.
ABSTRACT

Historical masonry structures are often located in earthquake-prone regions and the majority of them are considered to be seismically vulnerable and unsafe. Historical masonry towers are slender structures that exhibit unique architectural features and may present many inadequacies in terms of seismic performance. The seismic protection of such typologies of structures and the design of effective retrofitting interventions require a deep understanding of their behavior under horizontal loads. This paper presents the results of the seismic performance evaluation of historical masonry towers located in Northern Italy. A large set of case studies is considered, comprising a significant number of towers with high slenderness and marked inclination. First, a preliminary assessment of the dynamic behavior of the different towers is carried out through eigenfrequency analyses. Then, non-linear dynamic simulations are performed using a real accelerogram with different peak ground accelerations. A damage plasticity material model, exhibiting softening in both tension and compression, is adopted for masonry. The huge amount of results obtained from the non-linear dynamic simulations allows a comparative analysis of the towers to be performed in order to assess their seismic vulnerability and to show the dependence of their structural behavior on some geometrical characteristics, such as slenderness, inclination, and presence of openings and belfry. The evaluation of different response parameters and the examination of tensile damage distributions show the high vulnerability of historical masonry towers under horizontal loads, mainly in the presence of marked inclination and high slenderness. Some general trends of the seismic behavior of the towers are deduced as a function of the main typological features.  相似文献   

3.
This article presents a numerical study on the force-deformation behavior of masonry spandrels supported on arches which are analyzed using simplified micro models. The model is validated against results from quasi-static cyclic tests on masonry spandrels. A large range of spandrels with different arch geometries, material properties, and axial load ratios are studied. The numerical results are compared to peak strength values predicted with an existing mechanical model. Finally, estimates for the initial stiffness and the spandrel rotation associated with the onset of strength degradation are derived.  相似文献   

4.
Historical towers, in particular medieval towers, are an important part of cultural heritage, and their preservation mandates monitoring and detailed analyses of vulnerability under seismic actions as well as of their long-term performance. Certain aspects of structural nature are linked to the masonry behavior as a unilateral material, and other are aspects related to the interaction with soft soil conditions. This study aims to contribute to the aspects of preservation by exploring the role of the soil-structure interaction in predicting the behavior of the structures, with specific reference to the well-documented case history of the medieval Ghirlandina Tower (Modena, Italy). A significant contribution comes from an experimental identification analysis, performed in the presence of ambient vibration. A novel finding is that the soil structure interaction cannot be neglected, in contrast to most published identification analyses that usually assume the structure to have rigid constraint at base.  相似文献   

5.
文中采用扫描电镜(SEM)和透射电镜(TEM)对海门口遗址饱水古木进行降解机理分析。结果表明:古木细胞次生壁收缩严重并与胞间层分离;胞间层保存较完好,呈连续网状。说明古木纤维素和半纤维素降解相对严重,木质素降解相对较轻。古木主要是受细菌降解,通过SEM和TEM均可见明显的细菌腐朽特征。细菌首先侵入细胞腔,再通过S3层侵入细胞壁内部。细胞壁内由于降解而产生的空隙在几十到几百纳米之间。饱水古木也受到了一定程度的真菌降解,但这类真菌主要降解古木内淀粉等物质,对细胞壁物质降解能力差,主要是使古木变色。  相似文献   

6.
The paper concerns an interaction problem between soil and masonry vaults in historic buildings. A particular emphasis was placed on the influence of finishing method of vaults extrados and fill material properties on the behavior of masonry vaults. The results of experimental studies on barrel vaults with and without backfill are presented. During the experiments three finishing methods of vaults extrados and three fill materials were investigated. The results of the experiments show that the presence of backfill and type of vaults extrados finish affect the behavior and load-carrying capacity of tested elements. Moreover, tests were performed on vaults without fill for comparative purposes. The comparison of experimental results obtained for specimens with and without fill shows that the presence of backfill in vault haunches modifies the failure mechanism and increases load capacity of the analysed models. The presented results confirm the importance of backfill as a structural element of vaulted structures.  相似文献   

7.
This study addresses the problem of evaluation of strength of masonry walls. In-plane behavior of masonry panels has been studied under monotonic diagonal-compression and shear-compression loading in quasi-static test facility. The results of 35 laboratory and in situ tests are analyzed to show that in the case of the diagonal compression test results are lower than the strength of masonry walls evaluated trough the shear-compression test, highlighting the problem of choosing the test which best simulates to the real behavior of the masonry when stressed by lateral loads. A presentation is also given of the results of a F.E. investigation for shear strength evaluation of masonry walls. F.E. modeling non-linear procedure was used for the representation of masonry panels. The numerical simulations are compared with experimental results and the reliability of the different finite element models is discussed, thus confirming the different shear strength values measured in the experimental campaign.  相似文献   

8.
ABSTRACT

A principal reason of damage in historic masonry vaults consists in relative displacements of the vaults’ abutments. Excluding the case of seismic-induced damage, cracks are often produced by differential settlements generated by the lateral wall instability or soil degradation (e.g., due to stress concentrations, non-uniform soil stratigraphy, flooding phenomena etc.). When dealing with historic vaults, the effects of long-term deformation processes cannot often be linked directly to causes, which may also be unknown. In this article, the effects of differential settlements on historic masonry barrel vaults are investigated. An efficient 3D contact-based model was developed to reproduce experiments on a scaled pointed barrel vault (representative of a typology of late-medieval barrel vaults in Scotland) under non-uniform differential settlement. First, the numerical model is used to simulate the experimental campaign, achieving good agreement in terms of crack pattern (longitudinal shear) and transverse-longitudinal deformation profiles. Then, further analyses are carried out to gain insight on the effects of several plausible uniform and non-uniform settlement patterns on representative historic barrel vaults. Various settlement configurations were analysed and complex failure patterns observed. This study could help analysts in understanding the nature of on-going deformation process in historic masonry vaults and engineers in the design of strengthening strategies.  相似文献   

9.
Abstract

Chaco Culture National Historical Park in northwestern New Mexico contains a wealth of archaeological resources, including 150 large earth and masonry structures under active management and preservation. In response to loss of original fabric from exposure over the last 100 years and more, as well as from continuous cycles of maintenance and repair, an extensive and long-term reburial programme was embarked upon in the late 1980s. The overall context of the site and the decision to undertake reburial as a principal conservation strategy is described in Part I of this paper. Part II provides a summary of the results of partial reburial at Chetro Ked, one of the ‘great houses’ of the canyon, in which protection of original timber was the main objective. Most of the wood at Chetro Ked could be covered only by a shallow overburden of soil, necessitating a specialized reburial design and materials to exclude moisture. Recent evaluation of the efficacy of the wood reburial was undertaken. Problems and shortcomings that were identified have led to re-design of part of the reburial and more careful attention to quality control during the intervention, as well as to selection of more appropriate geosynthetic materials. Additional monitoring techniques have been developed to allow direct withdrawal of samples of wood for assessment of deterioration.  相似文献   

10.
ABSTRACT

An experimental campaign and a numerical analysis devoted to the investigation of the out-of-plane behavior of masonry walls reinforced with Fiber Reinforced Cementitious Matrix (FRCM) are presented here. The main goal of this study is to analyze and evaluate the effectiveness of the strengthening system, by discussing failure modes and capacity of strengthened masonry walls, in order to assess their behavior under out-of-plane horizontal actions, such as, for example, seismic actions. A purposely designed experimental set-up, able to separately and independently apply an axial force and out-of-plane horizontal actions on masonry walls, was used. Experimental results are discussed and compared with the outcomes of nonlinear analyses performed on simplified finite element models of the walls. A proper evaluation of the flexural capacity of FRCM strengthened walls is the first step of the ongoing process of drawing reliable code guidelines leading to a safe design of strengthened masonry structures.  相似文献   

11.
ABSTRACT

Traditional domes are obtained by double curvature shells, which can be rotationally formed by any curved geometrical plane figure rotating about a central vertical axis. They are self-supported and stabilized by the force of gravity acting on their weight to hold them in compression. However, the behavior of inverted domes is different since the dome is downward and masonry inverted domes and their structural behaviors in the literature received limited attention. This article presents a nonlinear finite element analysis of historical brick masonry inverted domes under static and seismic loads. The brick masonry inverted dome in the tomb of scholar Ahmed-El Cezeri, town of Cizre, Turkey, constructed in 1508 is selected as an application. First, a detailed literature review on the masonry domes is given and the selected inverted dome is described briefly. 3D solid and continuum finite element models of the inverted masonry dome are obtained from the surveys. An isotropic Concrete Damage Plasticity (CDP) material model adjusted to masonry structures with the same tensile strength assumed along the parallel and meridian directions of the inverted dome is considered. The nonlinear static analyses and a parametric study by changing the mechanical properties of the brick unit of the inverted masonry dome are performed under gravity loads. The acceleration records of vertical and horizontal components of May 1, 2003 Bingöl earthquake (Mw = 6.4), Turkey, occurred near the region, are chosen for the nonlinear seismic analyses. Nonlinear step by step seismic analyses of the inverted dome are implemented under the vertical and horizontal components of the earthquake, separately. Static modal and seismic responses of the inverted masonry dome are evaluated using mode shapes, minimum and maximum principal strains and stresses, and damage propagations.  相似文献   

12.
古代砖砌体建筑由于材料劣化、环境影响,材料特性及力学性能均受到不同程度的影响和损伤,为了保护历史文化的载体,结合古建筑材料获取原始且必要的数据,系统总结了古砖、传统灰浆的制备工艺和材料性能,简要归纳了古砖、传统灰浆和古砖砌体基本力学性能及其测试方法,对比分析了单砖和砌体抗压强度的差异以及古建筑砌体材料力学性能研究现状。并对今后古砌体如弹性模量等力学性能、古砌体材料及结构的损伤机理等的研究提出了展望或建议,可为砖石古建筑的修缮保护提供参考依据。  相似文献   

13.
A simple variational formulation for contact dynamics is adopted to investigate the dynamic behavior of planar masonry block structures subjected to seismic events. The numerical model is a two-dimensional assemblage of rigid blocks interacting at potential contact points located at the vertices of the interfaces. A no-tension and associative frictional behavior with infinite compressive strength is considered for joints. The dynamic contact problem is formulated as a quadratic programming problem (QP) and an iterative procedure is implemented for time integration. Applications to analytical and numerical case studies are presented for validation. Comparisons with the experimental results of a masonry wall under free rocking motion and of a small scale panel with opening subjected to in-plane loads are also carried out to evaluate the accuracy and the computational efficiency of the formulation adopted.  相似文献   

14.
ABSTRACT

Although many experimental tests and numerical models are available in the literature, the numerical simulation of the seismic response of existing masonry buildings is still a challenging problem. While the nonlinear behavior of masonry structures is reasonably predictable when the out-of-plane behavior can be considered inhibited, when the in-plane and out-of-plane responses coexist and interact, simplified models seem unable to provide reliable numerical predictions. In this article, taking advantage of the experimental tests carried out in a shaking table on two masonry prototypes at LNEC, a macro-element approach is applied for the numerical simulations of their nonlinear response. The adopted approach allows simulating the nonlinear behavior of masonry structures considering the in-plane and out-of-plane responses. Since it is based on a simple mechanical scheme, explicitly oriented to representing the main failure mechanisms of masonry, its computational cost is greatly reduced with respect to rigorous solutions, namely nonlinear FEM approaches. Two modeling strategies are adopted, namely a regular mesh independent from the real texture of the prototypes and a detailed one coherent with the units disposal. The numerical results are discussed and the correlation between the nonlinear static analyses and the dynamic response is provided.  相似文献   

15.
16.
Masonry building aggregates are large parts of the Italian building heritage often designed without respecting seismic criteria. The current seismic Italian code does not foresee a clear calculation method to predict their static nonlinear behavior. For this reason, in this article a simple methodology to forecast the masonry aggregate seismic response has been set up. The implemented procedure has been calibrated on the results of two FEM structural analysis programs used to investigate three masonry building compounds. As a result, a design chart used to correctly predict the base shear of aggregate masonry units starting from code provisions has been set up.  相似文献   

17.
The influence of masonry infills with openings on the seismic performance of reinforced concrete (R/C) frames that were designed in accordance with modern codes provisions is investigated. Two types of masonry infills were considered that had different compressive strength but almost identical shear strength. Infills were designed so that the lateral cracking load of the solid infill is less than the available column shear resistance. Seven 1/3 – scale, single–story, single–bay frame specimens were tested under cyclic horizontal loading up to a drift level of 40%. The parameters investigated are the opening shape and the infill compressive strength. The assessment of the behavior of the frames is presented in terms of failure modes, strength, stiffness, ductility, energy dissipation capacity, and degradation from cycling. The experimental results indicate that infills with openings can significantly improve the performance of RC frames. Further, as expected, specimens with strong infills exhibited better performance than those with weak infills. For the prediction of the lateral resistance of the studied single-bay, single-story infilled frames with openings, a special plastic analysis method has been employed.  相似文献   

18.
The present publication investigates what happens to archaeological sites when they are built over. Focus is put on the degradation of charred organic materials by static loading. It is assumed that materials lose archaeological value if their fragments become too small to be recovered, or too distorted to be classified at species level. Several charred ecofacts of a few millimetres in size (wood fragments, hazelnut shells, and seeds) have been selected and subjected to individual particle strength tests. Assemblages of these particles have also been compressed one-dimensionally and scanned at several stages of testing using laboratory based X-ray microtomography. Microscopic damage by splitting or crushing is found to be limited at the macroscopic yield stress. It initiated at stresses less than 80 kPa for the weakest assemblages, and in all cases at stresses below 320 kPa. (80 kPa represents the load of a 6 m high sand embankment on soft soil that has half-settled underneath the groundwater table, while 320 kPa corresponds to stresses applied beneath the pile foundation level of high-rise buildings.) Sand seeded with charred particles has also been tested to illustrate the beneficial effect of embedment of charred particles in sand during static one dimensional loading.  相似文献   

19.
A study was made of the degradation of archaeological Scots pine (Pinus sylvestris L.) at the Iron Age archaeological site of Biskupin, Poland. Wood degradation was evaluated after 10 years of deposition of samples in different burial conditions (mineral soil, peat and water) and at different depths (25, 50 and 100 cm) at the location of the original archaeological wood from the Lusatian culture settlement. Changes in the wood samples were assessed on the basis of selected physical (maximum water content, basic density and porosity) and chemical (chemical composition, structure of cellulose and lignin) properties. The observed degradative changes were different for samples deposited in different locations of the archaeological site and at different depths. They relate mainly to carbohydrates—both cellulose and hemicelluloses—although the structure of lignin also underwent changes. The experiment using wood that had been degraded to a similar degree to the Biskupin wood enabled identification of the actual danger of degradation of the latter. It was found that the remains of the wooden structure of the Biskupin settlement are degrading, despite the favourable physicochemical conditions prevailing at the site, and it is necessary to take measures to prevent its further decomposition.  相似文献   

20.
ABSTRACT

A large number of buildings all around the world are constructed of unreinforced masonry. These structures do not act well during earthquakes because of their vulnerable behavior. In last two decades, fiber-reinforced polymers (FRPs) has been used widely in seismic rehabilitation and strengthening unreinforced concrete and masonry structures. One important issue in using FRP composites for strengthening masonry walls is the inopportune debonding of composites from the wall surface; thus, in this article new methods are proposed to further delay the mentioned debonding issue. For this purpose, 13 masonry panels with 100x870x870 mm dimension are strengthened by using carbon and glass FRPs (CFRPs and GFRPs). A variety of strengthening methods such as surface preparation, boring, grooving, nailing, and plaster are used to mount FRP composites to the walls. For each specimen subjected to diagonal compression test, the loading level along with tensile and compressive diagonal displacements are evaluated. In order to assess the effect of FRP composites, four unreinforced masonry walls are tested as well. The results show 110% increase in ductility index of reinforced specimens compared to the unreinforced ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号